• Title/Summary/Keyword: Product Properties

Search Result 2,854, Processing Time 0.025 seconds

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

An Experimental Study for RFID Application of Construction Materials in an Apartment House Construction Site (건설자재의 공동주택 현장 적용을 위한 RFID 부착 및 인식에 관한 실험적 연구)

  • Ju, Ki-Beom;Han, Choong-Han
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.5
    • /
    • pp.67-75
    • /
    • 2009
  • While the trend of all industries recently lies in combination, construction industry is much interested in enhancing efficiency and competitiveness in the aspect of site control by adopting RFID. Though RFID has been applied to diverse areas thus far, it cannot be easily applied to construction industry due to diverse physical, chemical and use-environmental properties of construction materials. Furthermore, it is rarely applied to the site because of many problems in its application. It is required to prepare RFID code issuance and system that can systematically control the code as well as to research the standardization of frequency, specification, protocol, package method, recognition method, etc in order to apply RFID to construction industry. In this research, RFID code issuance and management program are proposed as a part of program research to apply RFID. Furthermore, the restricted matters of existing RFID tag are drawn to produce pilot product of RFID tag that can solve it so as to perform site application test. According to the experiment, effective recognition distance varies depending on material/environmental property and control efficiency changes depending on attachment method and application method. Thus, preparing diverse restrictive factors and solutions by systematically analyzing control method(medium, process) of current architecture materials and applying it to construction site can be the way to successfully apply RFID.

Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer (Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향)

  • 장희석;박상환;권혁보;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

Fabrication and Characteristics of Infrared Photodiode Using Insb Wafer with p-i-n Structure (p-i-n 구조의 InSb 웨이퍼를 이용한 적외선 광다이오드의 제조 및 그 특성)

  • Cho, Jun-Young;Kim, Jong-Seok;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • A highly sensitive photovoltaic infrared photodiode was fabricated for detecting infrared light in $3{\sim}5\;{\mu}m$ wavelength range on InSb wafer with p-i-n structure grown by MOCVD. Silicon dioxide($SiO_2$) insulating films for the junction interface and surface of photodiode were prepared using RPCVD because InSb has low melting point and evaporation temperature. After formation of In ohmic contacts by thermal evaporation, the electrical properties of the photodiode were characterized in dark state at 77K. A product of zero-bias resistance and area($R_0A$) showed $1.56{\times}10^6\;{\Omega}{\cdot}cm^2$ that satisfied BLIP(background limited infrared photodetector) condition. When the photodiode was tested under infrared light, the normalized detectivity of about $10^{11}\;cm{\cdot}Hz^{1/2}{\cdot}W^{-1}$ was obtained. we successfully fabricated a unit cell with InSb IR array with good quantum efficiency and high detectivity.

  • PDF

A Novel Acid-Stable Endo-Polygalacturonase from Penicillium oxalicum CZ1028: Purification, Characterization, and Application in the Beverage Industry

  • Cheng, Zhong;Chen, Dong;Lu, Bo;Wei, Yutuo;Xian, Liang;Li, Yi;Luo, Zhenzhen;Huang, Ribo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.989-998
    • /
    • 2016
  • Acidic endo-polygalacturonases are the major part of pectinase preparations and extensively applied in the clarification of fruits juice, vegetables extracts, and wines. However, most of the reported fungal endo-polygalacturonases are active and stable under narrow pH range and low temperatures. In this study, an acidic endo-polygalacturonase (EPG4) was purified and characterized from a mutant strain of Penicillium oxalicum. The N-terminal amino acid sequence of EPG4 (ATTCTFSGSNGAASASKSQT) was different from those of reported endo-polygalacturonases. EPG4 displayed optimal pH and temperature at 5.0 and 60-70℃ towards polygalacturonic acid (PGA), respectively, and was notably stable at pH 2.2-7.0. When tested against pectins, EPG4 showed enzyme activity over a broad acidic pH range (>15.0% activity at pH 2.2-6.0 towards citrus pectin; and >26.6% activity at pH 2.2-7.0 towards apple pectin). The Km and Vmax values were determined as 1.27 mg/ml and 5,504.6 U/mg, respectively. The enzyme hydrolyzed PGA in endo-manner, releasing oligo-galacturonates from PGA, as determined by TLC. Addition of EPG4 (3.6 U/ml) significantly reduced the viscosity (by 42.4%) and increased the light transmittance (by 29.5%) of the papaya pulp, and increased the recovery (by 24.4%) of the papaya extraction. All of these properties make the enzyme a potential application in the beverage industry.

Aquifer Characterization Using Seismic Data on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 탄성파자료를 통한 이산화탄소 지중저장 연구지역 대수층 특성화)

  • Cheong, Snons;Kim, Byoung-Yeop;Shinn, Young Jae;Lee, Ho-Yong;Park, Myung-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.625-633
    • /
    • 2014
  • The Aquistore project is the world's first commercial capture, transportation, utilization and storage project of post-combustion $CO_2$ from a coal-fired thermo electric power plant, and the proposed storage is a saline aquifer at a depth of about 3,500 m. Deep saline aquifer, compared to hydrocarbon reservoir, provides the great volumetric potential for storage of $CO_2$ anywhere in the world, therefore the research results from the project may be exported globally to other sites. Geological $CO_2$ storage characterization for saline aquifer instead of hydrocarbon reservoir needs to estimate the geophysical properties of subsurface geology. This study calculated the geophysical property of water-saturated formation by applying amplitude variation analysis developed from oil and gas exploration. We correlated horizon tops at the well logs to seismic traveltime of 1,815 and 1,857 ms as Winnipeg and Deadwood formations. Gradient analysis from seismic traces showed correlation coefficient of 45 - 81 % on amplitude variation with respect to incident angle. Crossplot of intercept and gradient shows the inverse proportional trend which represents typical water saturated sediments. Product attribute of intercept and gradient described the base of wet sediment. Poisson's ratio change attribute increased at the top of target area satisfying with wet sediment and decreased at the top of basement in a dry rock bed.

Beneficial Effects of Kefir in Preventing and Treating Human Cancers (Kefir를 이용하여 다양한 Cancer 생성 예방 및 치료에 관한 연구)

  • Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyunsook;Lee, Soo-Kyung;Kim, Hong-Seok;Yim, Jin-Hyuk;Song, Kwang-Young;Kang, Il-Byung;Kim, Young-Ji;Jeong, Dana;Park, Jin-Hyeong;Jang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • Kefir, originating from Caucasus, is an acidic, alcoholic fermented milk product with little acidic taste and a creamy consistency. It is recognized in having beneficial effects infor the prevention and treatment of cancer. For example, Kefir has possesses a chemopreventative effect on carcinogenesis. There has recently been a strong focus on fermented milk foods containing a mixture of several functional organic substances and various probiotic microorganisms. Hence, the purpose of this review paper was to evaluate the scientific evidence for the effects of kefir on cancer prevention and treatment. Some of we analyzed and summarized data-relating to the effects of kefir on cancer. The cacers that kefir has an effect on are as follows: colon cancer, breast cancer, leukemia, sarcoma, skin cancer, gastric cancer. This review suggests that (1) kefir could be associated with cancer prevention, (2) kefir has beneficial effects in cancer treatment, and (3) kefir has various bioactive components including peptides, polysaccharides and sphingolipids, which contribute tofor itsthese anti-cancer properties. Furthermore, furthermore, studies were performed in order to obtain as to get the scientific evidence of kefir's anticancer activity: (1) improved protective effectiveness in vivo (human subjects or animal model), (2) isolation and identification of various bioactive components, and (3) mechanisms associated with beneficial effects.

Properties of Strength Development of Concrete at Early Age Using High Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 치환한 콘크리트의 조기강도 발현 특성)

  • Ha, Jung-Soo;Kim, Han-Sic;Lee, Young-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • Cement industries are considered key industries for reducing carbon emissions, and efforts are off the ground to reduce the use of cement in the concrete sector. As a part of this effort, research is off the ground to utilize a large amount of industrial by-products that can be used as a substitute for a part of cement. Concrete using industrial by-products has advantages such as durability, environment friendliness and economical efficiency, but there are problems such as retarding and early-age strength deterioration. Therefore, this study aimed to reduce the use of cement and solve the problem of early-age strength deterioration while using fly ash, which is an industrial by-product. Accordingly, it was confirmed that the strength was improved at all ages irrespective of curing temperature by accelerating the hydration reaction by using high fineness cement. Subsequently, high fineness cement was partially replaced with fly ash and the strength development characteristics were examined. As a result, it was possible to exhibit strength equal to or higher than ordinary portland cement even at the early age. Also, it was confirmed that even when the fly ash is replaced by 30%, it is possible to shorten the time for dismantling the forms of vertical and horizontal members.