• 제목/요약/키워드: Produced water

검색결과 3,681건 처리시간 0.035초

오존을 이용한 오 .폐수처리에 관한 연구 (A Study on the Ozonation of Organic Materials in Sewage and Waste Water)

  • 황상용;이규성;김병석
    • 환경위생공학
    • /
    • 제6권1호
    • /
    • pp.103-108
    • /
    • 1991
  • Visibility studies are conducted in oxidizing organic compounds with ozone to investigate the oxidation in the waste and sewage water. While the ozone has been used as one of the major oxidation of the waste and sewage water, it is not effective to distroy the polluted organic compounds with the practical concentration in waste water treatment. The result are shown follows ; 1. Upon oxidizing organic compound with ozone, the former is much oxidized under three meters and the latter under the ABS waste water. 2. In case of being oxidized organics waste water with ozone codis, much removed under medicine and chemical waste water than anothers of primary treatment process. 3. The final treated waste water of oxidizing organics is higher than that of filtered water or sedimented water. Specially in organics waste water the colority after oxidizing decrease from 95% to 99.9% this suggests that any organic compounds produced during ozonation night be dissdved in the final treated waste water.

  • PDF

Estimation of Water Balance based on Satelite Date in the Korean Peninsula

  • Shin, Sha-Chul;Sawamoto masaki, Sawamoto-Masaki
    • Korean Journal of Hydrosciences
    • /
    • 제8권
    • /
    • pp.97-110
    • /
    • 1997
  • Quantifying water balance components is crucial to understanding the basic hydrology and hydrochemistry. An importance of water balace studies has been emphasized from the need to grasp the actual condition of water resources and environmental changes including climatic changes. This paper proposes a method for evaluating water balance components based on the vegetation monitor using remote sensing data. Here, the evapotranspiration model adopts a direct method by using NDVI(Normalized Difference Vegetation Index) calculated from NOAA/AVHRR data and a detailed descriptionof water balance by using the evapotranspiration over the Korean Peninsula. In the study, areal distribution data sets of water balance components are produced using NDVI and a simplified water balance model. This method enables one to discuss the hydrological problems for North Korea where insufficient meteorological and hydrological data exist. The results obtained indicate the specific regional features on water inventory and fluctuation in water balance.

  • PDF

강우 및 태양광 씨뮤레이터를 이용한 침식방지 브랑켓들의 침식방지 효과와 식물성장의 촉진효과 확인을 위한 실험 (Tests of Different Erosion Control Blankets for Erosion Control and Plant Growth Enhancement under Simulated Rain and Sunlight)

  • 장창학
    • 한국환경복원기술학회지
    • /
    • 제1권1호
    • /
    • pp.133-140
    • /
    • 1998
  • The following conclusions are based upon data collected and visual observations made during the performance of the tests : 1. The performance of the erosion control products tested was for a particular set of conditions, and may be expected to differ if any or all of the test parameters were to be changed. If even just one parameter is changed from one test to the next, the results can be expected to be different. 2. Due to the fact that only two replications of each product were tested, we believe that the results presented herein are indicative only and not conclusive. 3. The ECB SC produced the least amount of soil erosion followed by ECB S, ECB C, and Coir No. 2, in that order. 4. All of the erosion control blankets tested significantly reduced soil erosion rates with respect to the bare soil controls. 5. The ECB S produced the smallest water runoff rate, followed closely by ECB SC. Next in order were ECB C and Coir No. 2. 6. All of the erosion control blankets reduced the water runoff rate with respect to the bare soil control. 7. Mesh 2cm There was not much difference in plant height for the four erosion control blankets and the bare soil control plots. the ECB S produced slightly taller plants than the rest of the materials tested. 8. The four erosion control blankets(ECB C, ECB SC, ECB S, and Coir No. 2) produced a larger plant mass than the bare soil plots. The difference between the plant mass for the four erosion control blankets, however, is minimal. 9. The ECB C produced the least percentage of lost seed and the largest percentage of germinating seed. 10. The ECB SC had the second smaller percentage of seed lost, followed closely by ECB S, and then by Coir No. 2. 11. All erosion control blankets had a smaller percentage of seed lost than the bare soil control plots. 12. The ECB C had the second largest percentage of germinating seed, followed closely by ECB SC and Coir No. 2. 13. All erosion control blankets had a larger percentage of germinating seed than the bare soil control plots. 14. The ECB C had the smallest percentage of non-germinating seed, followed by ECB S, Coir No. 2, and ECB SC, in that order. 15. All erosion control blankets had smaller percentages of non-germinating seed than the bare soil control plots.

  • PDF

강우에 의한 사면붕괴에 관한 2차원 수치모의 (Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure)

  • 램 크리쉬나 레그미;정관수;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

Physico-Mechanical Properties of Cement-Bonded Boards Produced from Mixture of Corn Cob Particles and Gmelina arborea Sawdust

  • Adelusi, Emmanuel Adekanye;Olaoye, Kayode Oladayo;Adelusi, Felicia Temitope;Adedokun, Samuel Ayotunde
    • Journal of Forest and Environmental Science
    • /
    • 제37권1호
    • /
    • pp.79-89
    • /
    • 2021
  • Cement bonded boards of 10 mm in thickness were produced from the mixture of Gmelina arborea sawdust and corn cob particles. The strength and dimensional stability of cement bonded composites produced from these two mixtures were examined. A total of thirty experimental boards were produced at density level of 1,000 kg/㎥ with cement to fibre ratio of 2.5:1 and 3:1 and five (5) blending proportions of G. arborea sawdust to corn cob particles of 100:0; 75:25; 50:50; 25:75 and 100:0. The effect of the cement to fibre ratio and blending proportion on the Water Absorption (WA), Thickness Swelling (TS), Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) were determined. The result indicates that as the mixing ratio of cement to fibre and blending proportion of maize cob (75%) to G. arborea (25%) increased, the thickness swelling, water absorption decreased, whereas the MOR and MOE increased. It also shows that most dimensionally stable and flexural strength boards were produced at the highest level of mixing ratios (3:1) and blending proportion of G. arborea to corn cob 25:75. However, the analysis of variance shows that TS and WA were significantly different, whereas, MOE and MOR were not significantly affected by mixing ratios and blending proportions. Finding of this study has shown that maize cob particles are suitable for cement bonded board production.

어린이집 급식실 정수기의 미생물학적 오염 평가 (Prevalence of Microbiological Contamination on Water Purifiers at Lunchroom in Child Care Center)

  • 윤미혜;김중범;오혁수
    • 한국식품조리과학회지
    • /
    • 제28권5호
    • /
    • pp.599-604
    • /
    • 2012
  • In this study, the prevalence of microbiological hazard on water purifiers at lunchroom in child care center was investigated. A total of 49 water purifiers and their purified cold water were sampled to test about the total aerobic bacteria, coliform bacteria, Bacillus cereus, Staphylococcus aureus, and Salmonella spp. Total aerobic bacteria was detected over 2.0 log CFU/mL in 6 out of 49 purified cold water (12.2%), ranged from 2.0 to 2.4 log CFU/mL, and the average number of total aerobic bacteria was showed to be 3.3 log CFU/drain spout. The drain spout turned out to be a major contaminant in water purifier and needs to be improved. Coliform bacteria were also detected in 7 out of 49 cold faucets (14.3%) and 7 out of 49 drain spouts (14.3%), but not detected in purified cold water. All samples were not contaminated with the pathogens tested in this study, except for B. cereus, which was contaminated on 2 out of 49 cold faucets (4.1%) and 4 out of 49 drain spouts (8.2%). All of B. cereus isolates produced enterotoxin, such as heamolysin BL enterotoxin (HBL) or non-heamolytic enterotoxin (NHE). The HBL was detected in 5 out of 6 B. cereus isolates (83.3%), including B. cereus PCF-11 and B. cereus PDS-30 isolate only produced NHE (16.7%). These results showed that the sanitary conditions of cold faucets and drain spouts should be improved promptly.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Bacillus lentimorbus B-6 균주로부터 생산된 $\alpha$-Glucosidase 억제제의 생물 유화제로서의 특성 (Emulsifying Character of $\alpha$-Glucosidase Inhibitor Produced from Bacillus lentimorbus B-6)

  • 양용준;김경자
    • 약학회지
    • /
    • 제53권3호
    • /
    • pp.114-118
    • /
    • 2009
  • Bioemulsifiers are those chemicals which are produced from microorganisms but which have both hydrophilic and hydrophobic groups. $\alpha$-Glucosidase inhibitor ($\alpha$-GI) produced from Bacillus lentimorbus B-6 (B-6) showed bioemulsifying activity. But $\beta$-glucosidase inhibitor produced from B-6 didn't show emulsifying activity. $\alpha$-GI was purified from supernatant of B-6 grown in minimal culture medium containing glucose and sodium glutamate by Sephadex G-100 column chromatography and isolated from $\beta$-GI by dialysis against water. Toluene was determined as the best substrate for emulsifying activity of $\alpha$-GI. $\alpha$-GI showed thermostability at $100^{\circ}C$ for 15 min, high salt tolerance up to 32% NaCl and wide range of pH-stability at pH $4\sim10$. Emulsifying character of $\alpha$-GI can be useful for the liposome formation for the treatment of diabetes mellitus.

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

원위치 제조 액상 Ferrate(VI)와 안정화 Ferrate(VI)를 이용한 2,4,6-tribromophenol의 제거 비교연구 (Comparison of 2,4,6-tribromophenol removal using in-situ liquid ferrate(VI) and stable ferrate(VI))

  • ;정선영;김일규
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.123-130
    • /
    • 2018
  • This paper provided the information related to the removal of 2,4,6-tribromophenol using in-situ and stable liquid ferrates(VI). This research's goal was to observe the differences of oxidation power between in-situ liquid ferrate(VI) and stable liquid ferrate(VI). The in-situ liquid ferrate(VI) ($FeO_4{^{2-}}$) has been successfully produced with the concentration 42,000 ppm (Fe) after 11 minutes of reaction time. The stable liquid ferrate(VI) was also successfully produced following the modification method by Sharma with the produced concentrations 7,000 ppm. The stable liquid ferrate(VI) was stable for 44 days and slightly decreased afterwards. This research has been carried out using 2,4,6-tribromophenol as the representative compound. Both of ferrates(VI) have the highest oxidation capability at the neutral condition. Furthermore, the stable liquid ferrate(VI) has higher oxidation power than the in-situ liquid ferrate(VI).