• Title/Summary/Keyword: Processor Core

Search Result 396, Processing Time 0.027 seconds

High Performance Message Scattering Algorithm in Multicore Processor (멀티코어 프로세서에서의 효율적인 메시지 스캐터링 지원 기법)

  • Park, Jongsu
    • Journal of Platform Technology
    • /
    • v.10 no.2
    • /
    • pp.3-9
    • /
    • 2022
  • In this paper, to maximize the performance of the scatter communication in multi-core and many-core processors, a technique that considers the communication situation of the processing node is applied to a multi-core processor composed of 32 processing nodes. Since the existing scatter algorithm cannot recognize the communication conditions of the processing nodes, communication is generally performed according to an initially set transmission order. In this case, scatter communication starts only after the communication currently being performed by all processing nodes inside the processor is finished. The scatter communication performance was improved by this technique, and it was confirmed that there was a performance improvement of up to 78.93% compared to the existing algorithm through BFM simulation.

Improvement in Reconstruction Time Using Multi-Core Processor on Computed Tomography (다중코어 프로세서를 이용한 전산화단층촬영의 재구성 시간 개선)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.487-493
    • /
    • 2015
  • The reconstruction on the computed tomography requires much time for calculation. The calculation time rapidly increases with enlarging matrix size for improving image quality. Multi-core processor, multi-core CPU, has widely used nowadays and has provided the reduction of the calculation time through multi-threads. In this study, the calculation time of the reconstruction process would improved using multi-threads based on the multi-core processor. The Pthread and the OpenMP used for multi-threads were used in convolution and back projection steps that required much time in the reconstruction. The Pthread and the OpenMP showed similar results in the speedup and the efficiency.

Implementation of a 'Rasterization based on Vector Algorithm' suited for a Multi-thread Shader architecture (Multi-Thread 쉐이더 구조에 적합한 Vector 기반의 Rasterization 알고리즘의 구현)

  • Lee, Ju-Suk;Kim, Woo-Young;Lee, Bo-Haeng;Lee, Kwang-Yeob
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.46-52
    • /
    • 2009
  • A Multi-Core/Multi-Thread architecture is adopted for the Shader processor to enhance the processing performance. The Shader processor is designed to utilize its processing core IP for multiple purposes, such as Vertex-Shading, Rasterization, Pixel-Shading, etc. In this paper, we propose a 'Rasterization based on Vector Algorithm' that makes parallel pixels processing possible with Multi-Core and Multi-Thread architecture on the Shader Core. The proposed algorithm takes only 2% operation counts of the Scan-Line Algorithm and processes pixels independently.

Thermal Analysis of 3D Multi-core Processors with Dynamic Frequency Scaling (동적 주파수 조절 기법을 적용한 3D 구조 멀티코어 프로세서의 온도 분석)

  • Zeng, Min;Park, Young-Jin;Lee, Byeong-Seok;Lee, Jeong-A;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.1-9
    • /
    • 2010
  • As the process technology scales down, an interconnection has became a major performance constraint for multi-core processors. Recently, in order to mitigate the performance bottleneck of the interconnection for multi-core processors, a 3D integration technique has drawn quite attention. The 3D integrated multi-core processor has advantage for reducing global wire length, resulting in a performance improvement. However, it causes serious thermal problems due to increased power density. For this reason, to design efficient 3D multi-core processors, thermal-aware design techniques should be considered. In this paper, we analyze the temperature on the 3D multi-core processors in function unit level through various experiments. We also present temperature characteristics by varying application features, cooling characteristics, and frequency levels on 3D multi-core processors. According to our experimental results, following two rules should be obeyed for thermal-aware 3D processor design. First, to optimize the thermal profile of cores, the core with higher cooling efficiency should be clocked at a higher frequency. Second, to lower the temperature of cores, a workload with higher thermal impact should be assigned to the core with higher cooling efficiency.

Implementation of a 32-Bit RISC Core for Multimedia Portable Terminals (멀티미디어 휴대 단말기용 32 비트 RISC 코어 구현)

  • 정갑천;기용철;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.226-229
    • /
    • 2000
  • In this paper, we describe implementation of 32-Bit RISC Core for portable communication/information equipment, such as cellular telephones and personal digital assistants, notebook, etc. The RISC core implements the ARM$\^$R/V4 instruction set on the basis of low power techniques in architecture level and logic level. It operates with 5-stage pipeline, and has harvard architecture to increase execution speed. The processor is modeled and simulated in RTL level using VHDL. Behavioral Cache and MMU are added to the VHDL model for instruction level verification of the processor. The core is implemented using Mentor P'||'&'||'R tools with IDEC C-631 Cell library of 0.6$\mu\textrm{m}$ CMOS 1-poly 3-metal CMOS technology.

  • PDF

Implementation of Multi-Core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 알고리즘을 위한 멀티코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.45-52
    • /
    • 2011
  • In the past, a patient went to the room where an ultrasound image diagnosis device was set, and then he or she was examined by a doctor. However, currently a doctor can go and examine the patient with a handheld ultrasound device who stays in a room. However, it was implemented with only fundamental functions, and can not meet the high performance required by the focusing algorithm of ultrasound beam which determines the quality of ultrasound image. In addition, low energy consumption was satisfied for the mobile ultrasound device. To satisfy these requirements, this paper proposes a high-performance and low-power single instruction, multiple data (SIMD) based multi-core processor that supports a representative beamforming algorithm out of several focusing methods of mobile ultrasound image signals. The proposed SIMD multi-core processor, which consists of 16 processing elements (PEs), satisfies the high-performance required by the beamforming algorithm by exploiting considerable data-level parallelism inherent in the echo image data of ultrasound. Experimental results showed that the proposed multi-core processor outperforms a commercial high-performance processor, TI DSP C6416, in terms of execution time (15.8 times better), energy efficiency (6.9 times better), and area efficiency (10 times better).

Quantifying Architectural Impact of Liquid Cooling for 3D Multi-Core Processors

  • Jang, Hyung-Beom;Yoon, Ik-Roh;Kim, Cheol-Hong;Shin, Seung-Won;Chung, Sung-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.297-312
    • /
    • 2012
  • For future multi-core processors, 3D integration is regarded as one of the most promising techniques since it improves performance and reduces power consumption by decreasing global wire length. However, 3D integration causes serious thermal problems since the closer proximity of heat generating dies makes existing thermal hotspots more severe. Conventional air cooling schemes are not enough for 3D multi-core processors due to the limit of the heat dissipation capability. Without more efficient cooling methods such as liquid cooling, the performance of 3D multi-core processors should be degraded by dynamic thermal management. In this paper, we examine the architectural impact of cooling methods on the 3D multi-core processor to find potential benefits of liquid cooling. We first investigate the thermal behavior and compare the performance of two different cooling schemes. We also evaluate the leakage power consumption and lifetime reliability depending on the temperature in the 3D multi-core processor.

Performance Evaluation of Real-time Linux for an Industrial Real-time Platform

  • Jo, Yong Hwan;Choi, Byoung Wook
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.28-35
    • /
    • 2022
  • This paper presents a performance evaluation of real-time Linux for industrial real-time platforms. On industrial platforms, multicore processors are popular due to their work distribution efficiency and cost-effectiveness. Multicore processors, however, are not designed for applications with real-time constraints, and their performance capabilities depend on their core configurations. In order to assess the feasibility of a multicore processor for real-time applications, we conduct a performance evaluation of a general processor and a low-power processor to provide an experimental environment of real-time Linux on both Xenomai and RT-preempt considering the multicore configuration. The real-time performance is evaluated through scheduling latency and in an environment with loads on the CPU, memory, and network to consider an actual situation. The results show a difference between a low-power and a general-purpose processor, but from developer's point of view, it shows that the low-power processor is a proper solution to accommodate low power situations.

A Function-characteristic Aware Thread-mapping Strategy for an SEDA-based Message Processor in Multi-core Environments (멀티코어 환경에서 SEDA 기반 메시지 처리기의 수행함수 특성을 고려한 쓰레드 매핑 기법)

  • Kang, Heeeun;Park, Sungyong;Lee, Younjeong;Jee, Seungbae
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • A message processor is server software that receives various message formats from clients, creates the corresponding threads to process them, and lastly delivers the results to the destination. Considering that each function of an SEDA-based message processor has its own characteristics such as CPU-bound or IO-bound, this paper proposes a thread-mapping strategy called "FC-TM" (function-characteristic aware thread mapping) that schedules the threads to the cores based on the function characteristics in multi-core environments. This paper assumes that message-processor functions are static in the sense that they are pre-defined when the message processor is built; therefore, we profile each function in advance and map each thread to a core using the information in order to maximize the throughput. The benchmarking results show that the throughput increased by up to a maximum of 72 % compared with the previous studies when the ratio of the IO-bound functions to the CPU-bound functions exceeds a certain percentage.

Analyzing Thermal Variations on a Multi-core Processor (멀티코아 프로세서의 온도변화 분석)

  • Lee, Sang-Jeong;Yew, Pen-Chung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.57-67
    • /
    • 2010
  • This paper studies thermal characteristics of a mix of CPU-intensive and memory-intensive application workloads on a multi-core processor. Especially, we focus on thermal variations during program execution because thermal variations are more critical than average temperatures and their ranges for thermal management. New metrics are proposed to quantify such thermal variations for a workload. We study the thermal variations using SPEC CPU2006 benchmarks with varying cooling conditions and frequencies on an Intel Core 2 Duo processor. The results show that applications have distinct thermal variations characteristics. Such variations are affected by cooling conditions,operating frequencies and multiprogramming workload. Also, there are distinct spatial thermal variations between cores. Our new metrics and their results from this study provide useful insight for future research on multi-core thermal management.