• Title/Summary/Keyword: Process memory

Search Result 1,763, Processing Time 0.028 seconds

The Efficient Memory BISR Architecture using Sign Bits (Sign Bit을 사용한 고효율의 메모리 자체 수리 회로 구조)

  • Kang, Il-Kwon;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.85-92
    • /
    • 2007
  • With the development of the memory design and process technology, the production of high-density memory has become a large scale industry. Since these memories require complicated designs and accurate manufacturing processes, It is possible to exist more defects. Therefore, in order to analyze the defects, repair them and fix the problems in the manufacturing process, memory repair using BISR(Built-In Self-Repair) circuit is recently focused. This paper presents an efficient memory BISR architecture that uses spare memories effectively. The proposed BISR architecture utilizes the additional storage space named 'sign bit' for the repair of memories. This shows the better performance compared with the previous works.

Implementation of JPEG 2000 Codec on ARM9 Processor Using Effective Memory Management (효율적인 메모리 관리를 이용한 ARM9 프로세서에서의 JPEG2000 코덱 구현)

  • Cho, Shi-Won;Lee, Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.446-451
    • /
    • 2006
  • In this paper, we propose an implementation of JPEG2000 codec on the ARM9 Processor which includes independent memory management facility. The codec and memory management facility together can control the encoding and the decoding process effectively within available memory area. Embedded appliances like cellular phones have very limited internal memory which can't be expanded easily. However, they should provide various applications and services using restricted memory resources. The proposed codec with memory management can provide image quality that is identical to the original image on embedded platform. The implemented codec has no memory conflict with other applications. It shows that the proposed codec can manage memory resources efficiently.

Culture, Memory, and Literature: In Search of an Interdisciplinary Relationship Between Cultural and Literary Studies (문화, 회상 그리고 문학: 문화학과 문예학의 학제적 연관성에 관한 모색″)

  • 최문규
    • Lingua Humanitatis
    • /
    • v.1 no.2
    • /
    • pp.67-90
    • /
    • 2001
  • In the past few years, a trend has emerged emphasizing the interdisciplinary relationship between cultural and literary studies, and "memory" has been suggested as the central theme in this trend. According to Aleida and Jan Assmann, "memory" as collective memory (not individual recollection) has various functions and forms, of which communicative memory and cultural memory occupy opposite poles of a central axis. Whereas communicative memory relates to the living past shared among contemporaries, cultural memory relates to "recollected history" rather than factual history. Cultural memory finds transmission through symbolic media such as myths, festivities, and literary works. Literary works preserve critical and living memories as opposed to forgotten memories. In other words, literature should be better read as "criticism and memory" than "imitation and preservation." Works of literature are characterized by a turning away from repetition toward representation-the process of "making present" of what is past.

  • PDF

Fast and Memory Efficient Method for Optimal Concurrent Fault Simulator (동시 고장 시뮬레이터의 메모리효율 및 성능 향상에 대한 연구)

  • 김도윤;김규철
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.719-722
    • /
    • 1998
  • Fault simulation for large and complex sequential circuits is highly cpu-intensive task in the intergrated circuit design process. In this paper, we propose CM-SIM, a concurrent fault simulator which employs an optimal memory management strategy and simple list operations. CM-SIM removes inefficiencies and uses new dynamic memory management strategies, using contiguous array memory. Consequently, we got improved performance and reduced memory usage in concurrent fault simulation.

  • PDF

ON ALMOST SURE REPRESENTATIONS FOR LONG MEMORY SEQUENCES

  • Ho, Hwai-Chung
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.741-753
    • /
    • 1998
  • Let G(*) be a Borel function applied to a stationary long memory sequence {X$_{i}$} of standard Gaussian random variables. Focusing on the process {G(X$_{i}$)}, the present paper establishes the almost sure representation for the empirical quantile process, that is, Bahadur's representation, and for the empirical process with respect to sample mean. Statistical applications of the representations are also addressed.sed.

  • PDF

Fabrication of Soft Textile Actuators Using NiTi Linear Shape Memory Alloy and Measurement of Dynamic Properties for a Smart Wearable (스마트 웨어러블용 NiTi계 선형 형상기억합금을 이용한 소프트 텍스타일 액추에이터 제작 및 동적 특성 측정)

  • Kim, Sang Un;Kim, Sang Jin;Kim, Jooyong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1154-1162
    • /
    • 2020
  • In this study, the soft textile actuator is produced for a smart wearable with the shape memory effects from linear shape memory alloys of Nickel and Titanium using the driving force through the fabrication process. The measurement model was designed to measure dynamic characteristics. The heating method, and memory shape of the linear shape memory alloy were set to measure the operating temperature. A shape memory alloy at 40.13℃, was used to heat the alloy with a power supply for the selective operation and rapid reaction speed. The required amount of current was obtained by calculating the amount of heat and (considering the prevention of overheating) set to 1.3 A. The fabrication process produced a soft textile actuator using a stitching technique for linear shape memory alloys at 0.5 mm intervals in the general fabric. The dynamic characteristics of linear shape memory alloys and actuators were measured and compared. For manufactured soft textile actuators, up to 0.8 N, twice the force of the single linear shape memory alloy, 0.38 N, and the response time was measured at 50 s.

A novel page replacement policy associated with ACT-R inspired by human memory retrieval process (인간 기억 인출 과정을 응용하여 설계된 ACT-R 기반 페이지 교체 정책)

  • Roh, Hong-Chan;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The cache structure, which is designed for assuring fast accesses to frequently accessed data, resides on the various levels of computer system hierarchies. Many studies on this cache structure have been conducted and thus many page-replacement algorithms have been proposed. Most of page-replacement algorithms are designed on the basis of heuristic methods by using their own criteria such as how recently pages are accessed and how often they are accessed. This data-retrieval process in computer systems is analogous to human memory retrieval process since the retrieval process of human memory depends on frequency and recency of the retrieval events as well. A recent study regarding human memory cognition revealed that the possibility of the retrieval success and the retrieval latency have a strong correlation with the frequency and recency of the previous retrieval events. In this paper, we propose a novel page-replacement algorithm by utilizing the knowledge from the recent research regarding human memory cognition. Through a set of experiments, we demonstrated that our new method presents better hit-ratio than the LRFU algorithm which has been known as the best performing page-replacement algorithm for DBMS caches.

Efficient Page Allocation Method Considering Update Pattern in NAND Flash Memory (NAND 플래시 메모리에서 업데이트 패턴을 고려한 효율적인 페이지 할당 기법)

  • Kim, Hui-Tae;Han, Dong-Yun;Kim, Kyong-Sok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.272-284
    • /
    • 2010
  • Flash Memory differs from the hard disk, because it cannot be overwritten. Most of the flash memory file systems use not-in-place update mechanisms for the update. Flash memory file systems execute sometimes block cleaning process in order to make writable space while performing not-in-place update process. Block cleaning process collects the invalid pages and convert them into the free pages. Block cleaning process is a factor that affects directly on the performance of the flash memory. Thus this paper suggests the efficient page allocation method, which reduces block cleaning cost by minimizing the numbers of block that has valid and invalid pages at a time. The result of the simulation shows an increase in efficiency by reducing more block cleaning costs than the original YAFFS.

Impact of gate protection silicon nitride film on the sub-quarter micron transistor performances in dynamic random access memory devices

  • Choy, J.-H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.47-49
    • /
    • 2004
  • Gate protection $SiN_x$ as an alternative to a conventional re-oxidation process in Dynamic Random Access Memory devices is investigated. This process can not only protect the gate electrode tungsten against oxidation, but also save the thermal budget due to the re-oxidation. The protection $SiN_x$ process is applied to the poly-Si gate, and its device performance is measured and compared with the re-oxidation processed poly-Si gate. The results on the gate dielectric integrity show that etch damage-curing capability of protection $SiN_x$ is comparable to the re-oxidation process. In addition, the hot carrier immunity of the $SiN_x$ deposited gate is superior to that of re-oxidation processed gate.

ONO Ruptures Caused by ONO Implantation in a SONOS Non-Volatile Memory Device

  • Kim, Sang-Yong;Kim, Il-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.16-19
    • /
    • 2011
  • The oxide-nitride-oxide (ONO) deposition process was added to the beginning of a 0.25 ${\mu}m$ embedded polysiliconoxide-nitride-oxide-silicon (SONOS) process before all of the logic well implantation processes in order to maintain the characteristics of basic CMOS(complementary metal-oxide semiconductor) logic technology. The system subsequently suffered severe ONO rupture failure. The damage was caused by the ONO implantation and was responsible for the ONO rupture failure in the embedded SONOS process. Furthermore, based on the experimental results as well as an implanted ion's energy loss model, processes primarily producing permanent displacement damages responsible for the ONO rupture failure were investigated for the embedded SONOS process.