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ON ALMOST SURE REPRESENTATIONS
FOR LONG MEMORY SEQUENCES

Hwar-CaunG Ho

ABSTRACT. Let G(-) be a Borel function applied to a stationary
long memory sequence {X;} of standard Gaussian random variables.
Focusing on the process {G(X;)}, the present paper establishes the
almost sure representation for the empirical quantile process, that is,
Bahadur’s representation, and for the empirical process with respect
to sample mean. Statistical applications of the representations are
also addressed.

1. Introduction

Let {X;,i € Z} be a stationary sequence of standard Gaussian ran-
dom variables with covariance function satisfying

(1.1) r(n) = EX1 X1, =n|™%L(n), 0 < < 1,

where the function L(-) varies slowly at infinity. Stationary sequences
with covariance function as specified in (1.1) is usually said to exhibit
long memory or long-range dependence to reflect the fact ~_ r(n) = co.
As a result of (1.1), var(} 1, X;) = O(n*~2*L(n)), which is the main
feature often used to distinguish the long-memory processes from the tra-
ditional short-memory processes such as ARMA and Markov processes.
A detailed account of the development of long-memory processes, both in
theory and application, can be found in Kiinsch (1986), Robinson (1994)
and Beran (1994). To allow more flexibility on distribution, we focus on
the sequence modeled by Y; = G(X;),i € Z for some Borel function
G(-). Denoted by F(-) and f(-), respectively, the cumulative distribu-
tion function and the density function of Y;, and let Q(y) = F~(y) be
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the quantile function. Suppose the data set is {V;,---,Y,}. Denote by
Y, the i-th order statistics of {V},---,Y,}. Define for all z € R and
0<y<l1

Fi(z) = n') I{Yi<z},
i=1

Q.ly) = if{z: F,(x) >y}
= Y, f (k-1)/n<y<k/n, k=1,--- ,n.

Being regarded as the building block in the modern theory of empiri-
cal quantile process, the Bahadur representations [Bahadur, 1966] that
describe the almost sure relationship between the empirical quantile dis-
tribution and the empirical distribution has been extensively studied for
decades [see, Csorgd, 1983, for more references] and extended from iid
case to the setting of various types of weakly dependent stationary pro-
cesses, for example, ¢-mixing sequences [Sen, 1972, and linear processes
[Hesse, 1990]. Another important type of representation which is anal-
ogous to Bahadur’s representation arises from test for symmetry. It is
an almost sure expansion for the empirical distribution with respect to
sample mean. This paper aims to establish both representations for the
stationary long-memory process{Y;} which is known not satisfying the
strongly mixing property. The two representations for {Y;} are given
in Theorems 1 and 2 of Section 2 respectively. Corollaries to the theo-
rems address the statistical applications of the representations. Proofs
of Theorems 1 and 2 are given in Section 3.

2. Main results

Let X be a standard normal random variable and let H;(z) be the
j-th Hermite polynomial with leading coefficient one.In the sequel, we
assume the Borel function G(-) is square-integrable, i.e., EG?(X) < oo.
We let EG(X) = p and make the following definition. (see, e.g., Taqqu,
1979, and Dehling and Taqqu, 1989a)

DEFINITION. a; = E[G(X) — p}H;(X) and k = inf{j > 1,a; # 0}.
k* = inf{j : a;(y) # O for some y € R} where a;(y) = EI{G(X) <
yHI;(X).
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Following the above definition, we write

G(X) — =3 BH,(X) and 1{G(X) <9} - F) = Y S 5,00).
2 27

If G(z) = z it can be easily calculated that
(2.1) a;(y) = (-1)729(y),

where ®(z) is the standard normal distribution function. The positive
integers k and k* which play a critical role in deciding the normalization
constants are usually called the Hermite rank of G(X) and I{G(X) < y}
respectively. Set oZ(k) = var(}. 1, Hr(X;)). It is known that o2(k) =
O(L(n)*n?7*¢) if ko < 1 (cf. Dobrushin and Major, 1979, and Taqqu,
1979).

LEMMA 1. Assume k*a < 1. Then with probability one (logyn =
log logn)

(2.2) Timy—0o0; (K" )n(logyn) ¥ 2VE Isup |Fy(z) — F(z)| < 1

z€R
and
(23)  Timnoo0y (k) (logyn) FA(Y Hie(X3)) < 1.
i=1
Proof. Set

L= {l(x) = (k") lap(x) /Rk‘ K(ug, -+, up)g(wr)

s gug )duy -+ - dugs :/g2(u)du < 1}
R
and
L= { [ K uedgtun) gt [ Payin< 1}
RE R

where

*

b

ei(u1+--~+uk:) -1 ()2
24)  K(uy, - up) = C(k*,a) - - ~(1-)/2
( ) ('ll.] uk) ( a) Z(U1+"'+Uk')gu]
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(1~ 51 - ko)
k12T () sin 4527 |m

[ 1K e

(cf. (1.7) of Dehling and Taqqu, 1989b). We have from Hélder’s inequal-
ity

The constant C(k*,a) = { }'/2 is to guarantee

duy - -dup =1

|K (w1, -y we)g(un) - - - guge )| dun - - - duge < 1
RE

and
lax-(2)] < ( / I(G(u) < z)d®(u)"*( _/ H. (u)d®(u)"?
= (F@)(k)?
yielding
(2.5) VEk*!supsup |l(z)| < 1 and sup Ly < 1.

lel; z€R

By applying Corollary 5.3.5 of Stout (1979) to the FLIL obtained by
Dehling and Taqqu (1989b), (2.2) and (2.3) are immediate from
(2.5). a

The next lemma indicates that under the long-memory dependence
the empirical distribution may have a rate of convergence slower than
that of the sample mean, violating the commonly acknowledged /n-rule
in the conventional short-memory cases.

LEMMA 2. Under EG*(X) < oo, k* < k.

Proof. For any positive integer m > 1, define a finite signed measure
dvy, = Hp(2)d®(z). Then for all ¢ > 0

amly) = /I{G ) < yldvp(z)

)
/{G($)<—c}ﬂ{6'($)$y} {G@)e[-e,d}n{G(z)<y}

+ / Ydvp(z)
{G(z)>c}n{G(x)<y}

am(y; (—00, —¢)) + am(y; [—c.c]) + an(y; (¢, +00)).
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Since/ am(y; (¢, +00))dy = 0,

-C

I

/—cc am(y)dy /_CC am(y; (—00, —c))dy + /_cc am(y; [~c, ) dy

= 2c/ dvp(x) —|—/ (¢ — G(z))dvn(z)
{Gle)<—c} {IG(@)<e}

Since
E /{.Gmbc}d”"’(m" < / G (@) | Hon()dB(z) < 00,

dominated convergence theorem implies

lim c/ dvp(z) =0
€= J{IG(@)|>c}

Therefore lim, o [°, am(y)dy = —am. The proof is completed. O

Set Z; = F(Y;) and denote by Z,,.; the i-th order statistics of {Z;,-- -,
Z,}. Introduce

En(x) = n—IZI{Zi S x},
=1
Un(y) = inf{u: E,(u) >y}
= anlf(k~1)/n<y§k/n,k:1,,n

LEMMA 3. Assume inf,cr f(z) = 8 > 0. Then
(2.6) sup |Qn(y) — QY)| < B sup |Fu(z) — F(z)].
O<y<1 z€R

Proof. By argument similar to (1.2.7) of Csérgé (1983), we have
sup [Qn(y) — QW) < B sup |Un(y) —yl = A" sup |Fu(y) — F(y)l.
O<y<1 O<y<1 O<y<1

O
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THEOREM 1. Assume (1.1) holds with k*a < 1. If f(z) is bounded
away from zero and f'(-) is bounded,then with probability one

_ vy~ F(Q)
(2.7) u(y) = Qy)+ Fo®) + Ra(y),

sup |Ra(y)] = O(n~*'"V(L(n) logym)™"*)
1

O<y<

with H = 1 — (k*a/2).

Since o2(k*) = var(}_;, Hi-(X;)) = O(L(n)¥'n?), we can, setting
H=1/2,L(n) =1and k* = 1, view (2.7) as a formal extension of the
i.id case (cf. Kiefer, 1967). Representation Similar to (2.7) with crude
error R, (y) was obtained in [Ho and Hsing, 1996] for long-memory linear
processes. The following corollary is immediate from Theorem 1.

COROLLARY 1. Assume the same conditions as in Theorem 1. Sup-
pose k* =1, Then asn — oo

(2.8) m(Qn(y) -Q(y) — WN(O, 1)

in the sense of weak convergence in C([0, 1]) equipped with the sup-norm.

n a(QW))
1

Let EY; = p and assume the distribution of Y; is symmetric about u.
For any 0 < 7 < 1/2 define the 7-trimmed mean

n—[nr]

1
T;J _-;;:?EF;;T. j{: };d'
i=[nr]+1
Clearly,
1 1-r
[P — — -1 .
|Thr = Qu(y)dy| =0(n™") as,
and
1 1-7
=% ). Qy)dy = p.

Assume the probability density function f(-) of ¥; is positive on its sup-
port. Applying continuous mapping theorem [Billingsley, 1968] to (2.8),
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we have

(2.9) %(Tw —1) SN, D1 —1 27 / ) (?((g((ff)); W

where o2 =var(}.7_|Y;). (2.9) has an interesting implication that the
trimmed mean, a simple type of L-estimator, could be as efficient as or
even more efficient than sample mean. Under Gaussian long-memory
setting, for example, the a-trimmed mean and sample mean are equally
efficient because a1(Q(y)) = —¢(Q(y)) , assured by (2.1), implies that
the limiting distribution in (2.9) is just N(0,1). Beran (1991) made
similar observation for M-estimator. We present in the next theorem
the sample-mean version of representation (2.7). Similar results were
obtained for iid random variables (see, Ralescu and Puri, 1984, and
references therein). This representation has applications in estimat-
ing F(u) when both F and the mean p are unknown or in testing
the symmetry of £ about the unknown u (see Gastwirth, 1971). Let
pn =" 300 G(X).

THEOREM 2. Assume EG?(X) < oo and (1.1) with ka < 1. If f'(:)
is bounded, then with probability one

(2.10) Fu(pn) = Fa(p) + (1n — ) f (1) + Rn, _
R, = O(n™*?(o,(k*)(logy n)*"/?] - [0 (k) (logy n)**]/%).
Suppose G(z) = z. If @ < 1/3, then with probability one

Fulim) = Falw) = (07 Y Ha(X) P E ()

— )3 -
.11 o = o) + 2Bl gy 1
7, = O((n~" logy m)").

COROLLARY 2. Assume the same conditions as in Theorem 2. Sup-
pose k =1 and ai(p) + a1 f(p) # 0. Then asn — oo

n

(2.12) ey

(Fuln) — F(1)) 2 (a1(1) + a1 (1)) N(0, 1).
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When G(z) = z, then as n — oo,

(2.13) n** 2L F, (1) — F())
i,(2(61?/1) 63?/3 0102W1W2)¢,,( )

where ¢, = (2k!(1 — ka)~Y(2 — ka)~!)/? and W, can be represented as
double Wiener-Ito integral

W, = / K(uy, - ue) Blduy) - - - Bldws).

The function K is defined in (2.4) with k* = k, and B is a Gaussian
complex white noise measure with orthogonal increments.

Proof. Write (2.10) as

Ujl)wn(un) ~ F()
(2.14) = n(l) —— (a1 (1) + a1 (1)) (1o — 1)
+ 0:;‘1){2 ‘;}(n >~ Hy(X)) + Ru).

(2.10) assures that the second part on the right hand side of expansion
(2.14) vanishes as n — co. Hence (2.12) follows. When G(z) = z, i.e.,
Y; is itself standard normal, a; = 1 and, by (2.1), a;(p) = —¢(u) and
az(u) = ¢'(u) = 0. Note first that 02(k) = cin?***L¥(n) [Dehling and
Taqqu, 1989a, pp. 1769]. Similar to (2.14), (2.11) can be expressed as

n3I2L32(n)(F(ptn) — F(u))

— n3a/2L—3/2( d)n Z H3X

+ 20t — p)°/3 = (n” IZH2 D) (pn — 1)/2}

+ n3"‘/2L‘3/2 {Z a; _IZH +R’
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(2.13) then follows by the joint convergence in distribution of
(n07 (1) (1 — 1), 07(2) ZHz Do (3) D Ha(X2) 5 (W, Wa, W)

established in Theorem 2 of Ho and Sun (1990). The proof is
complete. a

3. Proofs

Proof of Theorem 1. Define
(3.1) Galy) = [Fa(@n(y)) — Fa(Q))] - [F(Qn(y)) — F(Q®))),

Dn(mv y) = [Fn(z) - Fn(Q(y))] - [F(.’E) - F(Q(y))})

d, = ﬂ'lan(k*)n“l(k‘*!)_l/z(logQ n)k’/r"(l +e¢€), €e>0,
and

In(y) = [Q(Y) — dn, Q(y) + dn).
Lemma 1 and 3 imply that with probability one

(3.2) |G (y)| = O( 2}4()) | Dn(z, y)1)-
Write
Duay) = AN i (x)

j=k*+1
= An(z, QY)) + Balz, Q(y)).
We note by Holder’s inequality that for all j > 1

(3.3) la;(z1) = a;(z2)| < [z, - $2|(221I§ F@)?,

which yields
sup sup |a(z) — a-(Q(y))| = O(d}/?).

O<y<lzel.(y)
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Hence from (2.2) of Lemma 1 we get, with probability one,
(34) A,= sup sup |Ax(z,Q(y))| = O((n on(k*))¥(logy n)*/%).

O<y<lzel,(y)

The same argument as in the proof of Theorem 3.1 of Dehlirg and Taqqu
(1989a) shows

(3.5) sup sup |B,(z, Q(y))] = o(A,).

0<y<l zel,(y)
It is clear that uniformly forall 0 <y < 1
(3:6) Fu(@u(®) ~ 9l = O(U/n)  as.
In view of (2.2) and (2.6),

(87)  sup [Qn(y) ~ QW) = o((n on(k*))%*(logy m)*/%).

O<y<

Apply Taylor’s theorem to F(Q,(y)) — F(Q(y)) in (3.1). Then, using
(3.6),

Q-(y)

Q)
(2.7) follows from (3.2) combined with (3.4) through (3.7).

+0(1/n) = Gu(y) + O(|Qn(y) — QW)P)-

The proof of Theorem 2 is very similar to that of Theorem 1. We
shall only sketch it. O

Proof of Theorem 2. The main points that are different from the
proof of Theorem 1 are: (1) u, and p are in place of Q,(y) and Q(y)
respectively, (2) k* in the expression of d,, is replaced by k, and (3) there
are two Hermite ranks k* and k involved. First, Lemma 2 assures that
k*a < 1. Replace I,(y) by

I, = [ll'_dm/"i"dn]-
Then, (3.3), and (2.2) and (2.3) of Lemma 1 give, with probability one,

sup | An(z, 1)| = O(n™*/%[or, (k") (logy )" /%] - [o(E) (logy m) /%],

z€l,
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which leads to (2.10). To prove (2.11), redefine

Go = 1Fin) = Fa) = L2 0 3 ()67 o)

@) ~ 20 — B ot S ) 1)
and

Dn("r, “) = [Fn(x) - Fn(u)] - [‘I)(.’I:) - CI)(;L)]
(z

+—§““)(n-‘§ﬂz(x,->)¢”(m

z — p)? i

HEZ B S Xye ()
i=1

Note by (2.1) that a;(z) = —¢(z) and ax(z) = ¢'(z). Therefore, the
Hermite expansion of Dy(z, u) is,

Dp(z,p) = _M ZH
+Z — ))( S Hy (X))

-IZX (lz=nl®)+® 1ZH2 Oz~ p ).

Like in proving (2.10), applying Taylor’s theorem to ®(u,) — ®(u), we
get
@ (pn) = B(1) = (kn = w)P() + (kn = 1)*¢"(1)/6 + Ol — ).

By imitating the proof of (2.10), the remaining details to conclude (2.11)
can be straightforwardly filled up and are thus omitted. O
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