• Title/Summary/Keyword: Process fault

Search Result 936, Processing Time 0.028 seconds

A New Type of Differential Fault Analysis on DES Algorithm (DES 알고리즘에 대한 새로운 차분오류주입공격 방법)

  • So, Hyun-Dong;Kim, Sung-Kyoung;Hong, Seok-Hie;Kang, Eun-Sook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.3-13
    • /
    • 2010
  • Differential Fault Analysis (DFA) is widely known for one of the most efficient method analyzing block cipher. In this paper, we propose a new type of DFA on DES (Data Encryption Standard). DFA on DES was first introduced by Biham and Shamir, then Rivain recently introduced DFA on DES middle rounds (9-12 round). However previous attacks on DES can only be applied to the encryption process. Meanwhile, we first propose the DFA on DES key-schedule. In this paper, we proposed a more efficient DFA on DES key schedule with random fault. The proposed DFA method retrieves the key using a more practical fault model and requires fewer faults than the previous DFA on DES.

Evaluation and Comparative Analysis of Scalability and Fault Tolerance for Practical Byzantine Fault Tolerant based Blockchain (프랙티컬 비잔틴 장애 허용 기반 블록체인의 확장성과 내결함성 평가 및 비교분석)

  • Lee, Eun-Young;Kim, Nam-Ryeong;Han, Chae-Rim;Lee, Il-Gu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.271-277
    • /
    • 2022
  • PBFT (Practical Byzantine Fault Tolerant) is a consensus algorithm that can achieve consensus by resolving unintentional and intentional faults in a distributed network environment and can guarantee high performance and absolute finality. However, as the size of the network increases, the network load also increases due to message broadcasting that repeatedly occurs during the consensus process. Due to the characteristics of the PBFT algorithm, it is suitable for small/private blockchain, but there is a limit to its application to large/public blockchain. Because PBFT affects the performance of blockchain networks, the industry should test whether PBFT is suitable for products and services, and academia needs a unified evaluation metric and technology for PBFT performance improvement research. In this paper, quantitative evaluation metrics and evaluation frameworks that can evaluate PBFT family consensus algorithms are studied. In addition, the throughput, latency, and fault tolerance of PBFT are evaluated using the proposed PBFT evaluation framework.

Sensor Fault Detection Scheme based on Deep Learning and Support Vector Machine (딥 러닝 및 서포트 벡터 머신기반 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.185-195
    • /
    • 2018
  • As machines have been automated in the field of industries in recent years, it is a paramount importance to manage and maintain the automation machines. When a fault occurs in sensors attached to the machine, the machine may malfunction and further, a huge damage will be caused in the process line. To prevent the situation, the fault of sensors should be monitored, diagnosed and classified in a proper way. In the paper, we propose a sensor fault detection scheme based on SVM and CNN to detect and classify typical sensor errors such as erratic, drift, hard-over, spike, and stuck faults. Time-domain statistical features are utilized for the learning and testing in the proposed scheme, and the genetic algorithm is utilized to select the subset of optimal features. To classify multiple sensor faults, a multi-layer SVM is utilized, and ensemble technique is used for CNN. As a result, the SVM that utilizes a subset of features selected by the genetic algorithm provides better performance than the SVM that utilizes all the features. However, the performance of CNN is superior to that of the SVM.

The Shape Preferred Orientation (SPO) Analysis in Estimation of Fault Activity Study (단층 활동 추적 연구에서의 Shape Preferred Orientation (SPO) 분석법)

  • Ho Sim;Yungoo Song;Changyun Park;Jaewon Seo
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The Shape Preferred Orientation (SPO) method has been used to analyze the orientation of fault motion, which is utilized as basic data for fault kinematics studies. The rigid grains, which as quartz, feldspar, and rock fragments, in the fault gouge are arranged in the P-shear direction through rigid body rotation by a given shear stress. Using this characteristic, the fault motion can be estimated from the SPO inversely. Recently, a method for securing precision and reliability by measuring 3D-SPO using X-ray CT images and examining the shape of a large number of particles in a short time has been developed. As a result, the SPO method analyzes the orientation of thousands to tens of thousands of particles at high speed, suggests the direction of fault motion, and provides easy accessibility and reliable data. In addition, the shape information and orientation distribution data of particles, which are by-products obtained in the SPO analysis process, are expected to be used as basic data for conducting various studies such as the local deformation of fault rocks and the fault generation mechanism.

Feasibility Study on the Fault Tree Analysis Approach for the Management of the Faults in Running PCR Analysis (PCR 과정의 오류 관리를 위한 Fault Tree Analysis 적용에 관한 시범적 연구)

  • Lim, Ji-Su;Park, Ae-Ri;Lee, Seung-Ju;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.245-252
    • /
    • 2007
  • FTA (fault tree analysis), an analytical method for system failure management, was employed in the management of faults in running PCR analysis. PCR is executed through several processes, in which the process of PCR machine operation was selected for the analysis by FTA. The reason for choosing the simplest process in the PCR analysis was to adopt it as a first trial to test a feasibility of the FTA approach. First, fault events-top event, intermediate event, basic events-were identified by survey on expert knowledge of PCR. Then those events were correlated deductively to build a fault tree in hierarchical structure. The fault tree was evaluated qualitatively and quantitatively, yielding minimal cut sets, structural importance, common cause vulnerability, simulation of probability of occurrence of top event, cut set importance, item importance and sensitivity. The top event was 'errors in the step of PCR machine operation in running PCR analysis'. The major intermediate events were 'failures in instrument' and 'errors in actions in experiment'. The basic events were four events, one event and one event based on human errors, instrument failure and energy source failure, respectively. Those events were combined with Boolean logic gates-AND or OR, constructing a fault tree. In the qualitative evaluation of the tree, the basic events-'errors in preparing the reaction mixture', 'errors in setting temperature and time of PCR machine', 'failure of electrical power during running PCR machine', 'errors in selecting adequate PCR machine'-proved the most critical in the occurrence of the fault of the top event. In the quantitative evaluation, the list of the critical events were not the same as that from the qualitative evaluation. It was because the probability value of PCR machine failure, not on the list above though, increased with used time, and the probability of the events of electricity failure and defective of PCR machine were given zero due to rare likelihood of the events in general. It was concluded that this feasibility study is worth being a means to introduce the novel technique, FTA, to the management of faults in running PCR analysis.

Recent instrumentation system safety instrumentation and man-machine interface

  • Satake, Noboru
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 1976
  • The industrial processes have become complicated on a large scale bacause of improvement of productivity, research of efficiency, and shortage of locations to be suited for foundation of factories. Consequently, the instrumentation and control systems for operating these industrial processes have also been highly improved with the development of mass information means. In order to operate these large-sized and complicated industrial processes safely, the man-machine interface for correspondence between man and machines and the instrumentation system regarding process fault processing are playing an important role increasingly. This paper describes recent instrumentation system in the water purifying plant as an example of these industrial processes, and covers both man-machine interface and process fault processing. The annual water supply quantity and diffusion were 2, 000, 000, 000m$^{3}$ and 25.0% in 1950 inJapan, but they amounted to 12, 000, 000, 000m$^{3}$ and 86.7% in 1974, respectively. The demands of water will increase incessantly, while it becomes gradually difficult to secure water sources. Accordingly, local self-governing bodies such as municipal cooperation, towns, and villages often construct a large-scale water purifying plant at one place in common, as required, without constructing respective plants independently. It is an absolute requirement for the water purifying plant to avoid stopping water supply to fullfil its social responsibility from the viewpoints of its public utility enterprise, and also it has gradually become difficult to secure skilled operators enough to cover such water purifying plants that are additionally provided in various districts. Thus, the importance of the man-machine interface for assuring safety operation of the water purifying plant irrespective of unskillfulness of operators as well as the instrumentation system regarding process fault processing, or, safety instrumentation, is more and more increasing as the water purifying plants are on a large scale.

  • PDF

Application of Symbolic Representation Method for Fault Detection and Clustering in Semiconductor Fabrication Processes (반도체공정 이상탐지 및 클러스터링을 위한 심볼릭 표현법의 적용)

  • Loh, Woong-Kee;Hong, Sang-Jeen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.806-818
    • /
    • 2009
  • Since the invention of the integrated circuit (IC) in 1950s, semiconductor technology has undergone dramatic development up to these days. A complete semiconductor is manufactured through a diversity of processes. For better semiconductor productivity, fault detection and classification (FDC) has been rigorously studied for finding faults even before the processes are completed. For FDC, various kinds of sensors are attached in many semiconductor manufacturing devices, and sensor values are collected in a periodic manner. The collection of sensor values consists of sequences of real numbers, and hence is regarded as a kind of time-series data. In this paper, we propose an algorithm for detecting and clustering faults in semiconductor processes. The proposed algorithm is a modification of the existing anomaly detection algorithm dealing with symbolically-represented time-series. The contributions of this paper are: (1) showing that a modification of the existing anomaly detection algorithm dealing with general time-series could be used for semiconductor process data and (2) presenting experimental results for improving correctness of fault detection and clustering. As a result of our experiment, the proposed algorithm caused neither false positive nor false negative.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

Garbage Collection Protocol of Fault Tolerance Information in Multi-agent Environments (멀티에이전트 환경에서 결함 포용 정보의 쓰레기 처리 기법)

  • 이대원;정광식;이화민;신상철;이영준;유헌창;이원규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.204-212
    • /
    • 2004
  • Existing distributed systems have higher probability of failures occurrence than stand-alone system, so many fault tolerant techniques have been developed. Because of insufficient storage resulting from the increased fault tolerance information stored, the performance of system has been degraded. To avoid performance degradation, it needs delete useless fault tolerance information. In this paper, we propose a garbage collection algorithm for fault tolerance information. And we define and design the garbage collection agent for garbage collection of fault tolerance information, the information agent for management of fault tolerant data, and the facilitator agent for communication between agents. Also, we propose the garbage collection algorithm using the garbage collection agent. For rollback recovery, we use independent checkpointing protocol and sender based pessimistic message logging protocol. In our proposed garbage collection algorithm, the garbage collection, information, and facilitator agent is created with process, and the information agent constructs domain knowledge with its checkpoints and non-determistic events. And the garbage collection agent decides garbage collection time, and it deletes useless fault tolerance information in cooperation with the information and facilitator agent. For propriety of proposed garbage collection technique using agents, we compare domain knowledge of system that performs garbage collection after rollback recovery and domain knowledge of system that doesn't perform garbage collection.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.