• Title/Summary/Keyword: Process computer

Search Result 9,458, Processing Time 0.042 seconds

A HARMS-based heterogeneous human-robot team for gathering and collecting

  • Kim, Miae;Koh, Inseok;Jeon, Hyewon;Choi, Jiyeong;Min, Byung Cheol;Matson, Eric T.;Gallagher, John
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • Agriculture production is a critical human intensive task, which takes place in all regions of the world. The process to grow and harvest crops is labor intensive in many countries due to the lack of automation and advanced technology. Much of the difficult, dangerous and dirty labor of crop production can be automated with intelligent and robotic platforms. We propose an intelligent, agent-oriented robotic team, which can enable the process of harvesting, gathering and collecting crops and fruits, of many types, from agricultural fields. This paper describes a novel robotic organization enabling humans, robots and agents to work together for automation of gathering and collection functions. The focus of the research is a model, called HARMS, which can enable Humans, software Agents, Robots, Machines and Sensors to work together indistinguishably. With this model, any capability-based human-like organization can be conceived and modeled, such as in manufacturing or agriculture. In this research, we model, design and implement a technology application of knowledge-based robot-to-robot and human-to-robot collaboration for an agricultural gathering and collection function. The gathering and collection functions were chosen as they are some of the most labor intensive and least automated processes in the process acquisition of agricultural products. The use of robotic organizations can reduce human labor and increase efficiency allowing people to focus on higher level tasks and minimizing the backbreaking tasks of agricultural production in the future. In this work, the HARMS model was applied to three different robotic instances and an integrated test was completed with satisfactory results that show the basic promise of this research.

Software Metric for CBSE Model

  • Iyyappan. M;Sultan Ahmad;Shoney Sebastian;Jabeen Nazeer;A.E.M. Eljialy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.187-193
    • /
    • 2023
  • Large software systems are being produced with a noticeably higher level of quality with component-based software engineering (CBSE), which places a strong emphasis on breaking down engineered systems into logical or functional components with clearly defined interfaces for inter-component communication. The component-based software engineering is applicable for the commercial products of open-source software. Software metrics play a major role in application development which improves the quantitative measurement of analyzing, scheduling, and reiterating the software module. This methodology will provide an improved result in the process, of better quality and higher usage of software development. The major concern is about the software complexity which is focused on the development and deployment of software. Software metrics will provide an accurate result of software quality, risk, reliability, functionality, and reusability of the component. The proposed metrics are used to assess many aspects of the process, including efficiency, reusability, product interaction, and process complexity. The details description of the various software quality metrics that may be found in the literature on software engineering. In this study, it is explored the advantages and disadvantages of the various software metrics. The topic of component-based software engineering is discussed in this paper along with metrics for software quality, object-oriented metrics, and improved performance.

Manufacture of Control and Data Acquisition System of Centrifugal Thin Film Evaporator(Centri-Therm, CT-1B) by Computer (컴퓨터를 이용한 원심식 박막증발기의 제어 및 자료 수집 시스템의 제작)

  • Park, Noh-Hyun;Kim, Byeong-Sam;Park, Moo-Hyun;Han, Bong-Ho;Bae, Tae-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.479-485
    • /
    • 1990
  • For the automation of a evaporation process, computer based evaporation system was built and applied to acquisition of the process variables with an centrifugal thin film evaporator(Centri-Therm, CT-1B). Controls of the process conditions were performed by computer system for pressure, feeding rate, steam, evaporation temperature and flow rate of cooling water. The data acquisitions were also performed by computer system for the changes in the concentration and temperature readings for steam, evaporation and cooling water at the both inlet and outlet. The control and the acquisition variables were collected through the interface device and analyzed by programs using the PASCAL language. To control the feeding rate during the concentration process, inverter was used. The cooling water for the vapor condensation was controlled by the valve controller and should be supplied with the flow rate of 125 kg/h. The maximum vapor condensation rate was 41.7kg/h at the feeding rate of 125 kg/h.

  • PDF

Computer Models on Oxygenation Process in the Pulmonary Circulation by Gas Diffusion

  • Chang, Keun-Shik;Bae, Hwang
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this article we introduce computer models that have been developed in the past to determine the concentration of metabolic gases, the oxygen and carbon dioxide, along the pulmonary circulation. The terminal concentration of these gases in the arterial blood is related with the total change of the partial pressure of the same gases in the alveoli for the time beginning with inspiration and ending with expiration. It is affected not only by the ventilation-perfusion ratio and the gas diffusion capacity of the lung membrane but also by the pulmonary defect such as shunt, dead space, diffusion impairment and ventilation-perfusion mismatch. Some pathological pulmonary symptoms such as ARDS and CDPD can be understood through the mathematical models of these pulmonary dysfunctions. Quantitative study on the blood oxygenation process using various computer models is therefore of foremost importance in order to monitor not only the pulmonary health but also the cardiac output and cell metabolism. Reviewed in this paper include the basic and advanced methods that enable numerical study on the gas exchange and on the arterial oxygenation process, which might depend on the various heart and lung physiological conditions listed above.

  • PDF

Stability of Ta-Mo alloy on thin gate dielectric (박막 게이트 절연체 위에서 Ta-Mo 합금의 안정성)

  • Lee, Chung-Keun;Kang, Young-Sub;Seo, Hyun-Sang;Hong, Shin-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.9-12
    • /
    • 2004
  • This paper investigated the stability of Ta-Mo alloy on thin gate dielectric. Ta-Mo alloy was deposited by using co-sputtering process after thermal growing of 3.4nm and 4.2nm silicon dioxide. When the sputtering power of Ta and Mo were 100W and 70W, respectively, the suitable work function for NMOS gate electrode, 4.2eV, could obtain. To prove interface thermal stability of thin film gate dielectric and Ta-Mo alloy, rapid thermal annealing was performed at $600^{\circ}C$ and $700^{\circ}C$ for 10sec in Ar ambient. The results of interface reaction were surveyed by change of silicon dioxide thickness and work function after annealing process. Also, the reliability of alloy gate and gate dielectric could be confirmed by quantity of leakage current. Ta-Mo alloy was showed low sheet resistance and thermal stability, namely, little change of gate dielectric and work function, after $700^{\circ}C$ annealing process.

  • PDF

Lip Type Electromagnetic Flap Valve for Low Leakage (누수 최소화를 위한 립 타입 전자력 플랩 밸브)

  • Lim, In-Ho;Lee, Ki-Jung;Sim, Woo-Young;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1476-1477
    • /
    • 2008
  • This paper reports on a flexible flap valve actuated by electromagnetic force under a constant pressure source. The flexible flap valve consists of the three main components: a flexible flap with a steel disk embedded in PDMS, an electromagnetic actuator and two glass plates with inlet and outlet. Sealing lip structures for improving the valve characteristics are added on the outlet of the bottom glass substrate. The flap valve is fabricated by the spin-coating process, the EDM process, SU-8 mold process and oxygen plasma treatment. The dimension of an assembled flap valve is $12mm{\times}20mm{\times}28mm$. The stroke volume of the flap valve is measured for various pressures and open times. When the input voltage of 30 V is applied for 0.33 s, the minimum stroke volume of the flap valve is 70 ${\mu}L$ at 50 kPa.

  • PDF

A Study on the Improvement of the Accuracy for the Least-Squares Method Using Orthogonal Function (직교함수를 이용한 최소자승법의 정밀도 향상에 관한 연구)

  • Cho, Won Cheol;Lee, Jae Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1986
  • With increasing of computer use, a least squares method is now widely used in the regression analysis of various data. Unreliable results of regression coefficients due to the floating point of computer and problems of ordinary least squares method are described in detail. To improve these problems, a least squares method using orthogonal function is developed. Also, Comparison and analysis are performed through an example of numerical test, and re-orthogonalization method is used to increase the accuracy. As an example of application, the optimum order of AR process for the time series of monthly flow at the Pyungchang station is determined using Akaike's FPE(Final Prediction Error) which decides optimum degree of AR process. The result shows the AR(2) process is optimum to the series at the station.

  • PDF

Fault Detection, Diagnosis, and Optimization of Wafer Manufacturing Processes utilizing Knowledge Creation

  • Bae Hyeon;Kim Sung-Shin;Woo Kwang-Bang;May Gary S.;Lee Duk-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.372-381
    • /
    • 2006
  • The purpose of this study was to develop a process management system to manage ingot fabrication and improve ingot quality. The ingot is the first manufactured material of wafers. Trace parameters were collected on-line but measurement parameters were measured by sampling inspection. The quality parameters were applied to evaluate the quality. Therefore, preprocessing was necessary to extract useful information from the quality data. First, statistical methods were used for data generation. Then, modeling was performed, using the generated data, to improve the performance of the models. The function of the models is to predict the quality corresponding to control parameters. Secondly, rule extraction was performed to find the relation between the production quality and control conditions. The extracted rules can give important information concerning how to handle the process correctly. The dynamic polynomial neural network (DPNN) and decision tree were applied for data modeling and rule extraction, respectively, from the ingot fabrication data.

Schedule Optimization in Resource Leveling through Open BIM Based Computer Simulations

  • Kim, Hyun-Joo
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this research, schedule optimization is defined as balancing the number of workers while keeping the demand and needs of the project resources, creating the perfect schedule for each activity. Therefore, when one optimizes a schedule, multiple potentials of schedule changes are assessed to get an instant view of changes that avoid any over and under staffing while maximizing productivity levels for the available labor cost. Optimizing the number of workers in the scheduling process is not a simple task since it usually involves many different factors to be considered such as the development of quantity take-offs, cost estimating, scheduling, direct/indirect costs, and borrowing costs in cash flow while each factor affecting the others simultaneously. That is why the optimization process usually requires complex computational simulations/modeling. This research attempts to find an optimal selection of daily maximum workers in a project while considering the impacts of other factors at the same time through OPEN BIM based multiple computer simulations in resource leveling. This paper integrates several different processes such as quantity take-offs, cost estimating, and scheduling processes through computer aided simulations and prediction in generating/comparing different outcomes of each process. To achieve interoperability among different simulation processes, this research utilized data exchanges supported by building SMART-IFC effort in automating the data extraction and retrieval. Numerous computer simulations were run, which included necessary aspects of construction scheduling, to produce sufficient alternatives for a given project.