• Title/Summary/Keyword: Process Value Analysis

Search Result 2,988, Processing Time 0.031 seconds

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D.;Kim, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.563-573
    • /
    • 2007
  • Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

Study on Riding Quality Improvement of a Forklift Truck through Structural Vibration Analysis (지게차 구조진동 특성분석을 통한 운전자승차감 개선기법 연구)

  • Ra, Duck-Joo;Kim, Jae-Hwan;Choi, Suck-Bae;Kim, Nag-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.542-545
    • /
    • 2004
  • The vibration reduction process for the driver comfort of a forklift truck is studied in this study since the related driver comfort is a primary design target in the vehicle design recently. However, the underlying study for a vibration analysis regarding to the driver comfort is still an element stage. Thus, a preceding large work has to be needed to apply the CAE technology for the detail vehicle design, and it prevents the vehicle optimal design. To reduce the proceeding large works, the evaluated process and required data are comply with the accumulated trouble shooting experiences in this study. Since the driver comfort is a human related problem, the human vibration index associated with analysis vibration result is additionally introduced as a driver comfort judgement value.

  • PDF

Structural Design of Slope Correction Device (경사 면 보정 장치의 구조 설계에 관한 연구)

  • Kim, Jeong-Hwa;Lee, Do-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.33-39
    • /
    • 2021
  • This paper presents an optimized design technique that can satisfy the design input values. Numerical analysis was performed on the slope correction device based on the first design. The stress distribution was confirmed when the load specified as the design input value was applied, and design changes were introduced for parts for which the design safety factor did not meet the standard to ensure rigidity. And the results were verified through FEA.

A Study on Business Process Based Asset Evaluation Model and Methodology for Efficient Security Management over Telecommunication Networks (정보통신망의 효율적 보안관리를 위한 비즈니스 프로세스 기반의 자산평가모델 및 방법론에 관한 연구)

  • Woo, Byoung-Ku;Lee, Gang-Soo;Chung, Tai-Myoung
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.423-432
    • /
    • 2003
  • It is essential suity management and standardized asset analysis for telecommunication networks, however existing risk analysis methods and tools are not enough to give shape of the method to evaluate value and asset. they only support asset classification schemes. Moreover, since the existing asset classification schemes are to evaluate comprehensive general risk, they are not appropriate for being applied telecommunication networks and they can´t offer any solutions to an evaluator´s subjectivity problem. In this paper, to solve these problems, we introduce the standardized definition of asset evaluation model new asset classification scheme, two-dimensional asset process classification scheme to consider business process and asset, various evaluation standards for quantitative value and qualitative evaluation. To settle an valuator´s subjectivity problem, we proposed $\beta$-distribution Delphi method.

Economic and Environmental Sustainability Assessment of Livestock Manure Gasification for Fuel Gas Production (축분 가스화를 통한 연료가스 생산 공정의 경제적, 환경적 지속가능성 평가)

  • Ji Hong Moon;Kyung Hwan Ryu
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2023
  • This research evaluates the sustainability of gasifying livestock manure to produce fuel gas from an economic and carbon emission perspective. The entire process, including gasification, fuel gas purification, and pipeline installation to transport the produced fuel gas to the demanding industrial complex, is analyzed for realistic feasibility. The study is conducted using an ASPEN PLUS simulation with experimental data. The results of the economic and CO2 life cycle assessments confirm that the fuel gas produced from livestock manure is competitive with natural gas despite having a lower calorific value. When used as a fuel with a high hydrogen content, the fuel gas emits less CO2 per calorific value, making it more environmentally friendly. A scenario analysis is also performed to determine the expected economics, with price competitiveness being influenced by several factors. Although a significant decrease in natural gas prices could reduce the price competitiveness of the proposed process, it can still be supported by government policies. The cash flow analysis also confirms the economic viability of the process.

An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells (광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석)

  • Kim, Soo Min;Bae, Soohyun;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Haeseok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

A Study of Improving the Reliability of VE Process (건설 VE 평가 신뢰도 향상 방안에 관한 연구)

  • Shin, Sung-In;Woo, Sungkwon;Jin, Sung-Ho;Choi, Seok-In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.881-889
    • /
    • 2016
  • The VE evaluation process, in which the value is composed of the cost and the function, should have a characteristic of quantitative analysis based on specific figures rather than qualitative approach. However, most of the VE evaluation performed domestically have a problem of having no systematic process of quantification of the function, even though the cost is estimated and analyzed quantitatively. Moreover, in addition to the tendency of strong practical experience, the VE evaluation has the problem of limited application of practical scientific analysis caused by declining the suggestion of creative opinions by over quantification or over objectification. This paper presents the suggestions for improvement of VE evaluation processes, which satisfies the aspects of simplification and objectification, without hindering the essence of the evaluation in the practical business point of view.

A Study on the Composite Insulation Boom Development of the Aerial Work Platform for Electric Work (전선작업용 고소작업차의 복합재 절연붐 개발)

  • Kang, Dongmyeong;Cho, Kyuchun;Hwang, Taekju;Sim, Kijoong;Guk, Ho-Hyeong;Kim, in-Soo;Park, Moon-ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.137-144
    • /
    • 2018
  • This study describes the 3D design and analysis of a composite insulation boom of an aerial work platform for electric work. Structural analysis of the composite insulation boom was performed using ANSYS and the total deformation, equivalent stress, and normal elasticity were investigated at 150 mm, 500 mm, 1,000 mm, and 1,500 mm using a mounted strain gauge. The results of the analysis and test were similar in a linearly increasing slope and the difference in the strain value was about 10%. This difference depends on the compressive force in the manufacturing process.

Analysis of Material Removal Rate of Glass in MR Polishing Using Multiple Regression Design (다중회귀분석을 이용한 BK7 글래스 MR Polishing 공정의 재료 제거 조건 분석)

  • Kim, Dong-Woo;Lee, Jung-Won;Cho, Myeong-Woo;Shin, Young-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.184-190
    • /
    • 2010
  • Recently, the polishing process using magnetorheological fluids(MR fluids) has been focused as a new ultra-precision polishing technology for micro and optical parts such as aspheric lenses, etc. This method uses MR fluid as a polishing media which contains required micro abrasives. In the MR polishing process, the surface roughness and material removal rate of a workpiece are affected by the process parameters, such as the properties of used nonmagnetic abrasives(particle material, size, aspect ratio and density, etc.), rotating wheel speed, imposed magnetic flux density and feed rate, etc. The objective of this research is to predict MRR according to the polishing conditions based on the multiple regression analysis. Three polishing parameters such as wheel speed, feed rates and current value were optimized. For experimental works, an orthogonal array L27(313) was used based on DOE(Design of Experiments), and ANOVA(Analysis of Variance) was carried out. Finally, it was possible to recognize that the sequence of the factors affecting MRR correspond to feed rate, current and wheel speed, and to determine a combination of optimal polishing conditions.

Structure Analysis and Torque Reduction Design of Industrial Ball Valve (산업용 볼밸브의 구조 해석 및 토크 저감 설계)

  • Ha, Sun-Ho;Kim, Sang-Jin;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.37-45
    • /
    • 2014
  • Ball valves are used as a key element in the process industries. The industrial development of valves has increased steadily, but continued improvement requires high design reliability and long service life. Currently, the development of high performance valves is not easy because of the lack of relevant technology in Korea. Valves are being imported at a level of up to 58 percent of the domestic market, which represents a value of almost 7 million US dollars. Therefore, in this work, the improvement of the design and performance of industrial valves has been studied in an attempt to achieve valves that will have longer service life and better output during operation. The structural stability was evaluated using the ANSYS FSI (Fluid-Structural Interaction) module. Moreover, to obtain maximum product reliability, torque analysis simulation was performed to compare and experimental results. The simulation results were used to predict the change in torque by changes in shape, thereby reducing the time and cost of manufacturing a number of prototypes for experimental validation.