OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D. (Department of Mechanical Engineering, Hanyang University) ;
  • Kim, W.S. (Department of Mechanical Engineering, Hanyang University)
  • Published : 2007.10.01

Abstract

Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

Keywords

References

  1. Baratti, R., Feckova, V., Morbidelli, M. and Varma, A. (1997). Optimal catalyst activity profiles in pellets. 11. the case of multiple-step distributions. Ind. Eng. Chem. Res. 36, 8, 3416−3420
  2. Bella, G., Rocco, V. and Maggiore, M. (1991). A study of inlet flow distortion effects on automotive catalytic converters. ASME J. Eng. Gas Turb. Pow., 113, 419-426 https://doi.org/10.1115/1.2906247
  3. Bird, R. B., Stewart, W. E. and Lightfoot, E. N. (1960). Transport Phenomena. 2nd edn. John Wiley & Sons. New York
  4. Brisley, R. J., Chandler, G. R., Jones, H. R., Anderson, P. J. and Shady, P. J. (1995). The use of palladium in advanced catalysts. SAE Paper No. 950259
  5. Chakravarty, S., Mittra, R. and Williams, N. R. (2002). Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics. IEEE Trans. Ant. Propa. 50, 3, 284-296 https://doi.org/10.1109/8.999618
  6. Church, M. L., Thoss, J. E. and Fizz, L. D. (1991). Operating temperature effects on catalyst performance and durability. SAE Paper No. 910845
  7. Koltsakis, G. C. and Stamatelos, A. M. (1997). Catalytic automotive exhaust aftertreatment. Prog. Energy Combust. Sci. 23, 1, 1-39 https://doi.org/10.1016/S0360-1285(97)00003-8
  8. Harada, K., Shimizu, R., Kurita, K. and Muramatsu, M. (1992). Development of air-assisted injector system. SAE Paper No. 920294
  9. Hauber, T., Zache, P., Braun, J. and Ueberschar, D. (1998). Influence of the space between monoliths and the geometry of endcones on the conversion rate of a catalytic converter. SAE Paper No. 980424
  10. Heibel, A. and Spaid, M. A. A. (1999). A new converter concept providing improved flow distribution and space utilization. SAE Paper No. 1999-01-0768
  11. Heimrich, M. J., Smith, L. R. and Kitowski, J. (1992). Cold-start hydrocarbon collection for advanced exhaust emission control. SAE Paper No. 920847
  12. Jeong, S. J. and Kim, W. S. (2000). Three-dimensional numerical study on the use of warm-up catalyst to improve light-off performance. SAE Paper No. 2000- 01-0207
  13. Jeong, S. J. and Kim, W. S. (2001). A new strategy for improving the warm-up performance of a light-off auto-catalyst for reducing cold-start emissions. Proc. Inst. Mech. Eng., D, J. Automob. Eng. 215, 11, 1179-1196
  14. Jeong, S. J. and Kim, W. S. (2002). Simulation of thermal and flow characteristics for optimum design of an automotive catalytic converter. Chem. Eng. Commun. 189, 10, 1314-1339 https://doi.org/10.1080/00986440214063
  15. Jeong, S. J. and Kim, W. S. (2003). A study on the optimal monolith combination for improving flow uniformity and warm-up performance of an auto-catalyst. Chem. Eng. Process. 42, 11, 879-895 https://doi.org/10.1016/S0255-2701(02)00140-X
  16. Kim, J. Y. and Son, S. H. (1999). Improved flow efficiency of a catalytic converter using the concept of radially variable cell density - Part I. SAE Paper No. 1999-01-0769
  17. Ma, T., Collings, N. and Hands, T. (1992). Exhaust gas ignition (EGI) - a new concept for rapid light-off of automotive exhaust catalyst. SAE Paper No. 920400
  18. Martin, A. P., Will, N. S., Bordet, A., Cornet, P., Gondoin, C. and Mouton, X. (1998). Effect of flow distribution on emission performance of catalytic converters. SAE Paper No. 980936
  19. Melis, S., Varma, A. and Pereira, C. J. (1997). Optimal distribution of catalyst for a case involving heterogeneous and homogeneous reactions. Chem. Eng. Sci. 52, 2, 165-169 https://doi.org/10.1016/S0009-2509(96)00394-6
  20. Oh, S. H. and Cavendish, J. C. (1982). Transients of monolithic catalytic converters: response to step changes in feedstream temperature as related to controlling automobile emissions. Ind. Eng. Chem. Prod. Res. Dev. 21, 1, 29-37 https://doi.org/10.1021/i300005a006
  21. Psyllos, A. and Philippopoulos, C. (1993). Performance of a monolithic catalytic converter used in automotive emission control: the effect of longitudinal parabolic active metal distribution. Ind. Eng. Chem. Res. 32, 8, 1555-1559 https://doi.org/10.1021/ie00020a004
  22. Summers, J. C., Hiera, J. P. and Williamson, W. B. (1991). Noble metal usage reduction strategies for three-way emission control catalysts. SAE Paper No. 911732
  23. Summers, J. C., Skowron, J. F. and Miller, M. J. (1993). Use of light-off catalysts to meet the California LEV/ULEV standards. SAE Paper No. 930386
  24. Tronci, S., Baratti, R. and Gavriiilidis, A. (1999). Catalytic converter design for minimisation of cold-start emissions. Chem. Eng. Commun., 173, 53-77 https://doi.org/10.1080/00986449908912776
  25. Voltz, S. E., Morgan, C. R., Liederman, D. and Jacob, S. M. (1973). Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev. 12, 4, 294-301 https://doi.org/10.1021/i360048a006
  26. Whittenberger, W. A. and Kubsh, J. E. (1990). Recent developments in electrically heated metal monoliths. SAE Paper No. 900503
  27. Zarowski, C. J. (2004). An Introduction to Numerical Analysis for Electrical and Computer Engineers. John Wiley & Sons. New York