• Title/Summary/Keyword: Process Cycle Efficiency

Search Result 449, Processing Time 0.024 seconds

Determination of the Optimal Operating Condition of the Hamworthy Mark I Cycle for LNG-FPSO (LNG-FPSO에의 적용을 위한 Hamworthy Mark I Cycle의 최적 운전 조건 결정)

  • Cha, Ju-Hwan;Lee, Joon-Chae;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.733-742
    • /
    • 2010
  • In this study, optimization was performed to improve the conventional liquefaction process of offshore plants, such as a LNG-FPSO(Liquefied Natural Gas-Floating, Production, Storage, and Offloading unit) by maximizing the energy efficiency of the process. The major equipments of the liquefaction process are compressors, expanders, and heat exchangers. These are connected by stream which has some thermodynamic properties, such as the temperature, pressure, enthalpy or specific volume, and entropy. For this, a process design problem for the liquefaction process of offshore plants was mathematically formulated as an optimization problem. The minimization of the total energy requirement of the liquefaction process was used as an objective function. Governing equations and other equations derived from thermodynamic laws acted as constraints. To solve this problem, the sequential quadratic programming(SQP) method was used. To evaluate the proposed method in this study, it was applied to the natural gas liquefaction process of the LNG-FPSO. The result showed that the proposed method could present the improved liquefaction process minimizing the total energy requirement as compared to conventional process.

A Study on the Optimum of Closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(I) (원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 I)

  • 이찬규;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.490-499
    • /
    • 1989
  • These days the closed cycle gas turbine attracts considerable attention due to : (1) The possibility of directly coupling the closed cycle gas turbine with a high temperature gas cooled reactor ; (2) the economical use of dry coolers to reduce the thermal charge of the environment ; and (3) the reduction of pollution and energy consumption, by replacing the domestic hearth by a central heating and power station. In this paper, we selected the optimal cycle from the characteristic of thermodynamic cycle for the optimal design of closed CO$_{2}$ gas turbine cycle usuable in nuclear energy power plant. Also the effects of between the parameters and thermal efficiency were investigated by computer simulation. These results and design data will be added to basics in optimal designing closed CO$_{2}$ cycle gas turbine plant.

Eco-Efficiency Assessment of the Recycling Process in Resources Recycling Center (자원재활용센터의 재활용 공정에 대한 생태효율성 평가)

  • KIM, Tae-Seok;KIM, Dong-Gyue;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1812-1821
    • /
    • 2015
  • In this study, we evaluate the eco-efficiency for recycling processes of Busan Resources Recycling Center for each year from 2010-2012. It analyze the impact of global warming on the power consumption by Life Cycle Assessment. Also calculate the economic value by net profit components those are sales amount and electric charge in accordance with the process operation. On the basis of these results, each of the eco-efficiency Factor analysis and dynamics analysis of 2011 and 2012 as the base year to 2010 are performed. As a result, the impact of global warming in all the recycling processes is increased by increasing power consumption 2010-2012. But net profit is decreased. In addition, the eco-efficiency of all the recycling processes is decreased and analysis result of the eco-efficiency trends is located on the Fully non Eco-efficiency (--) level. Therefore, all the recycling processes are necessary improvement for power consumption reducing and net profit increasing to further the environmental and economically sustainable direction.

Total quality management Activities Evaluation (TAE) Model by the traditional scoring system and the efficiency measuring system (품질경영활동의 효율성을 고려한 평가모형)

  • 유한주
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.100-107
    • /
    • 1998
  • To evaluate the total quality activities is the most fundamental and critical process as one of the PDCA cycle. The quality award criteria such as Malcolm Baldrige National Quality Award and Deming Award can be a, pp.ied to the guideline for evaluating quality activities. We can identify several important factors for TQM by referring quality award criteria, but they don't suggest how efficiently implement TQM. In this paper, two methodologies are a, pp.ied to evaluate the TQM activities comparatively. One of them is the traditional scoring system (TSS) by analytic hierarchy process (AHP). TSS is the system which evaluates the performance of TQM by the weighted sum of critical success factors. Several quality award system are typical examples of TSS. The other is the efficiency measuring system (EMS) by data envelop analysis (DEA). DEA outperformed other alternative methods to measure the efficiency and it can be a, pp.ied to evaluate the TQM activities. The evaluation system by DEA can be named as EMS. The objective of this paper is to suggest a model called TAE (Total quality management Activities Evaluation), for evaluating TQM activities. In this model TQM organizations are classified into four types by considering TSS and EMS. Those types are high weighted sum and high efficiency type, high weighted sum and low efficiency type, low weighted sum and high efficiency type, and low weighted sum and low efficiency type. Therefore TQM organizations must not only make efforts to get the higher scores in terms of TSS, but also take necessary steps to enhance their efficiencies.

  • PDF

An Extraction of Inefficient Factors and Weight for Improving Efficiency of the Curtain wall Life Cycle Process (커튼월 Life Cycle Process의 효율성 향상을 위한 비효율 요인 밑 중요도 도출)

  • Jung Soon-Oh;Kim Yea-Sang;Yoon Su-Won;Chin Sangyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.101-112
    • /
    • 2005
  • Recently, a curtain wall construction is a exterior finishing components which is most used for shortening time in high-rise building as well as the class of key management factors in cost and schedule control. Also, it is recognized that an effective management for curtain wall process is a major subject to accomplish the project successfully. However, as the current management for curtain wall construction is focused on the construction stage, it makes problems such as errors in business performance, rework by mistakes and duplications, errors and omissions by ineffective information management and there has never been any efficient management from a view of the entire Curtain Wall Life-cycle process. Therefore, the aim of this study is to suggest a stage check point for process improvement in the curtain wall Life-cycle process through current curtain wall process analysis, and then to investigate the cause of waste factors using the Muda method from the Toyota Production System and extract the weighted effects of the waste factors using the analytical hierarchy process method. According to the result, Most of the inefficient factors happened in architectural design stage of the entire curtain wall Life-cycle process and my research identified that detail factors of them are a delay of decision making and an approval in changes, a deficit of engineering capacity and a delay of approval in architectural design drawings by owner, etc.

Performance of fiber media filter device for combined sewer overflows treatment (합류식 하수관거 월류수 처리를 위한 섬유사 여과 장치의 처리특성)

  • Son, Sang-Mi;Warangkana, Jutidamrongphan;Park, Ki-Young;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.231-236
    • /
    • 2010
  • A compressible media filtration process with synthetic fiber media was studied for combined sewer overflows (CSOs) treatment. Since the operation performance of fiber media filtration was dependent on the pattern of CSOs, the flow rate of CSOs was investigated and it was characterized by a big fluctuation. Thus, in this study, the fiber media filtration process was tested with wide range of filtration velocity. The removal efficiency was proportion to the increase in compressibility. As the filtration velocity was increased, the treatment efficiency was decreased and consequently leveled off when the velocity exceeded 750 $m^3/m^2$/d. An exponential equation was introduced to express the relationship between the removal efficiency and up-flow velocity. At columm test, six repetition of filtration and backwash cycle did not after the filtering velocity under the constant pressure condition.

Study on Analysis of Heat Dissipation due to Shape of Motorcycle Disc Brake (모터사이클 디스크 브레이크 형상에 따른 방열해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.100-107
    • /
    • 2013
  • This study aims to improve the heat performance of motor cycle disk due to the number of holes by analyzing 6 kinds of disk models. This disk performance depends on the efficiency at emitting the heat. To raise the efficiency of heat emission, holes with circle or another configuration are made on disks to emit heat fast. The distribution of temperature, heat flux, deformation and stress are analyzed. As the number of holes on disk increases, the performance of heat emission is improved. Equivalent stress is decreased and durability is improved as the number of holes on disk increases. Though the number of holes on disk is increased, the performances of heat emission and durability do not become better. The optimal model can be found by comparing models each other through this analysis result. Through this study result, the configuration of motor cycle disk is designed with optimal heat emission and durability by comparing models.

Rules of Three Untrained Workers' Assignment Optimization in Reset Limited-Cycled Model with Multiple Periods

  • Song, Peiya;Kong, Xianda;Yamamoto, Hisashi;Sun, Jing;Matsui, Masayuki
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.372-378
    • /
    • 2015
  • In labor-intensive enterprise, such as garment factory, assembly line is widely used as a manufacturing process for reducing costs and production time. However, for the sake of the various working capacity of worker, idle or delay may happen and influence the rear processes. If these unforeseeable delay happened continuously, it may influence the whole manufacturing process and a model, which is called limited-cycle model with multiple periods (LCMwMP), is assumed to evaluate the influence risk. In order to minimize the risk, the assignment of the workers is focused on. In this paper, we deal with an assembly line as LCMwMP model when two kinds of workers exist, whose efficiency is assumed to two different groups. We consider an optimization problem for finding an assignment of workers to the line that minimizes total expected risk, which is exchanged to expected cost by reset model of LCMwMP. First, reset model as a simple model of LCMwMP is introduced. Then, some hypotheses of the rules of the optimal worker assignment are proposed and some numerical experiments are researched assuming the processing time as Erlang distribution. Finally, the other rules on other certain conditions are discussed.

Exergy and Entransy Performance Characteristics of Cogeneration System in Series Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 직렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.637-645
    • /
    • 2020
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Special attention is paid to the effects of the turbine inlet pressure, source temperature, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrance analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.