DOI QR코드

DOI QR Code

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source

저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성

  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • KIM, KYOUNGJIN (Department of Mechanical System Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNGGUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 김경진 (금오공과대학교 기계시스템공학과) ;
  • 정영관 (금오공과대학교 기계공학과)
  • Received : 2021.01.30
  • Accepted : 2021.02.28
  • Published : 2021.02.28

Abstract

In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Keywords

References

  1. A. Schuster, S. Karellas, E. Kakaras, and H. Spliethoff, "Energetic and economic investigation of organic Rankine cycle applications", Appl. Therm. Eng., Vol. 29, No. 8-9, 2009, pp. 1809-1817, doi: https://doi.org/10.1016/j.applthermaleng.2008.08.016.
  2. T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, and K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources", Energy, Vol. 35, No. 3, 2010, pp. 1403-1411, doi: https://doi.org/10.1016/j.energy.2009.11.025.
  3. M. Aguirre and G. Ibikunle, "Determinants of renewable energy growth: a global sample analysis", Energy Policy, Vol. 69, 2014, pp. 374-384, doi: https://doi.org/10.1016/j.enpol.2014.02.036.
  4. K. H. Kim and H. Perez-Blanco, "Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration", Appl. Therm. Eng., Vol. 91, 2015, pp. 964-974, doi: https://doi.org/10.1016/j.applthermaleng.2015.04.062.
  5. K. H. Kim and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, No. 1, 2014, pp. 50-60, doi: https://doi.org/10.1016/j.applthermaleng.2014.04.064.
  6. G. Qiu, "Selection of working fluids for micro-CHP systems with ORC", Renewable Energy, Vol. 48, 2012, pp. 565-570, doi: https://doi.org/10.1016/j.renene.2012.06.006.
  7. J. S. Pereira, J. B. Ribeiro, R. Mendes, G. C. Vaz, and J. C. Andre, "ORC based micro-cogeneration systems for residential application - a state of the art review and current challenges", Renew. Sustain. Energy Rev., Vol. 92, 2018, pp. 728-743, doi: https://doi.org/10.1016/j.rser.2018.04.039.
  8. M. Santos, J. Andre, E. Costa, R. Mendes, and J. Ribeiro, "Design strategy for component and working fluid selection in a domestic micro-CHP ORC boiler", Appl. Therm. Eng., Vol. 169, 2020, pp. 114945, doi: https://doi.org/10.1016/j.applthermaleng.2020.114945.
  9. U. Dresher and D. Brueggemann, "Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants", App. Therm. Eng, Vol. 27, No. 1, 2007, pp. 223-228, doi: https://doi.org/10.1016/j.applthermaleng.2006.04.024.
  10. J. Wang, J. Y. Dai, and L. Gao, "Exergy analysis and parametric optimization for different cogeneration power plants in cement industry", App. Energy, Vol. 86, No. 6, 2009, pp. 941-948, doi: https://doi.org/10.1016/j.apenergy.2008.09.001.
  11. F. Heberle and D. Brüggemann, "Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation", Appl. Therm. Eng., Vol. 30, No. 11-12, 2010, pp. 1326-1332, doi: https://doi.org/10.1016/j.applthermaleng.2010.02.012.
  12. J. S. Pereira, J. B. Ribeiro, R. Mendes, and J. C. Andre, "Analysis of a hybrid (topping/bottoming) ORC based CHP configuration integrating a new evaporator design concept for residential applications", Appl. Therm. Eng. Vol. 160, 2019, pp. 113984, doi: https://doi.org/10.1016/j.applthermaleng.2019.113984.
  13. A. Arabkoohsar and H. Nami, "Thermodynamic and economic analyses of a hybrid waste-driven CHP-ORC plant with exhaust heat recovery", Energy Convers. Mgmt., Vol. 187, 2019, pp. 512-522, doi: https://doi.org/10.1016/j.enconman.2019.03.027.
  14. J. Sachdeva and O. Singh, "Comparative evaluation of solarized triple combined cycle for different ORC fluids", Renewable Energy, Vol. 163, 2021, pp. 1333-1342, doi: https://doi.org/10.1016/j.renene.2020.09.063.
  15. K. H. Kim, B. D. Park, and M. H. Kim, "Thermodynamic performance analysis of a cogeneration system in series circuit using regenerative ORC", Trans Korean Hydrogen New Energy Soc, Vol. 26, No. 3, 2015, pp. 278-286, doi: https://doi.org/10.7316/KHNES.2015.26.3.278.
  16. K. H. Kim, "Theoretical characteristics of thermodynamic performance of combined heat and power generation with parallel circuit using organic Rankine cycle", J. Korean Solar Energy Society, Vol. 31, No. 6, 2011, pp. 49-56, doi: https://doi.org/10.7836/kses.2011.31.6.049.
  17. Z. Y. Guo, H. Y. Zhu, and X. G. Liang, "Entransy-a physical quantity describing heat transfer ability", Int. J. Heat Mass Transfer, Vol. 50, No. 13-14, 2007, pp. 2545-2556, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.034.
  18. X. T. Cheng, X. G. Liang, and Z. Y. Guo, "Entransy decrease principle of heat transfer in an isolated system", Chin. Sci. Bull., Vol. 56, 2011, pp. 847-854, doi: https://doi.org/10.1007/s11434-010-4328-4.
  19. X. T. Cheng and X. G. Liang, "From thermomass to entransy", Int. J. Heat Mass Transfer, Vol. 62, 2013, pp. 174-177, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.063.
  20. Z. Q. Yu, P. Wang, W. J. Zhou, Z. Y. Li, and W. Q. Tao, "Study on the consistency between field synergy principle and entransy dissipation extremum principle", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 621-634, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.044.
  21. L. Zhang, H. Wei, and X. Zhang, "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory", Energy, Vol. 141, 2017, pp. 661-672, doi: https://doi.org/10.1016/j.energy.2017.09.118.
  22. M. Xu, "The thermodynamic basis of entransy and entransy dissipation", Energy, Vol. 36, No. 7, 2011, pp. 4272-4277, doi: https://doi.org/10.1016/j.energy.2011.04.016.
  23. X. T. Cheng and X. G. Liang, "Analyses of entropy generation and heat entransy loss in heat transfer and heat-work conversion", Int. J. Heat Mass Transfer, Vol. 64, 2013, pp. 903-909, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.025.
  24. K. H. Kim and K. Kim, "Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems", Int. J. Heat Mass Transfer, Vol. 84, 2015, pp. 80-90, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.002.
  25. C. H. Han and K. H. Kim, "Entransy and exergy analyses for optimizations of heat-work conversion with carnot cycle", J. Ther. Sci., Vol. 25, 2016, pp. 242-249, doi: https://doi.org/10.1007/s11630-016-0856-9.
  26. S. Wang, W. Zhang, Y. Q. Feng, X. Wang, Q. Wang, Y. Z. Liu, Y. Wang, and L. Yao, "Entropy, entransy and exergy analysis of a dual-loop organic Rankine cycle (DORC) using mixture working fluids for engine waste heat recovery", Energies, Vol. 13, No. 6, 2020, pp. 1301, doi: https://doi.org/10.3390/en13061301.
  27. T. Yang, G. J. Chen, and T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: application up to the near-critical region", Chem. Eng. J., Vol. 67, No. 1, 1997, pp. 27-36, doi: https://doi.org/10.1016/S1385-8947(97)00012-0.
  28. J. Gao, L. D. Li, Z. Y. Zhu, and S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibria, Vol. 224, No. 2, 2004, pp. 213-219, doi: https://doi.org/10.1016/j.fluid.2004.05.007.