References
- R. Snoeckx and A. Bogaerts, "Plasma technology - a novel solution for CO2 conversion?", Chem. Soc. Rev., Vol. 46, No. 19, 2017, pp. 5805-5863, doi: https://doi.org/10.1039/C6CS00066E.
- H. S. Song, S. J. Kwon, W. S. Epling, S. C. Nam, and K. B. Yi, "Synthesis gas production via partial oxidation, CO2 reforming, and oxidative CO2 reforming of CH4 over a Ni/Mg-Al hydrotalcite-type catalyst", Clean Technology, Vol. 20, No. 2, 2014, pp. 189-201, doi: https://doi.org/10.7464/ksct.2014.20.2.189.
- J. H. Hong, H. J. Ha, and J. D. Han, "The promotion effects on partial oxidation of methane for hydrogen production over Co/Al2O3 and Ni/Al2O3 catalysts", Clean Technology, Vol. 18, No. 1, 2012, pp. 95-101, doi: https://doi.org/10.7464/ksct.2012.18.1.095.
- P. Beckhaus, A. Heinzel, J. Mathiak, and J. Roes, "Dynamics of H2 production by steam reforming", J. Power Sources, Vol. 127, No. 1-2, 2004, pp. 294-299, doi: https://doi.org/10.1016/j.jpowsour.2003.09.026.
- S. G. Wang, Y. W. Li, J. X. Lu, M. Y. He, and H. Jiao, "A detailed mechanism of thermal CO2 reforming of CH4", J. Molecular. Structure, Vol. 673, No. 1-3, 2004, pp. 181-189, doi: https://doi.org/10.1016/j.theochem.2003.12.013.
- A. E. Lutz, R. W. Bradshaw, L. Bromerg, and A. Rabinovich, "Thermodynamic analysis of hydrogen production by partial oxidation reforming", Int. J. Hydrogen Energy, Vol. 29, No. 8, 2004, pp. 809-816, doi: https://doi.org/10.1016/j.ijhydene.2003.09.015.
- L. Xu, Y. Liu, Y. Li, Z. Lin, X. Ma, Y. Zhang, M. D. Argyle, and M. Fan, "Catalytic CH4 reforming with CO2 over activated carbon based catalysts", Appl. Catal A Gen., Vol. 469, 2014, pp. 387-397, doi: https://doi.org/10.1016/j.apcata.2013.10.022.
- L. Li, H. Wang, X. Jiang, Z. Song, X. Zhao, and C. Ma, "Microwave-enhanced methane combined reforming by CO2 and H2O into syngas production on biomass-derived char", Fuel, Vol. 185, pp. 692-700, doi: https://doi.org/10.1016/j.fuel.2016.07.098.
- Y. N. Chun, Y. C. Yang, and K. Yoshikawa, "Hydrogen generation from biogas reforming using a gliding arc plasmacatalyst reformer", Catalysis Today, Vol. 148, No. 3-4, pp. 283-289, doi: https://doi.org/10.1016/j.cattod.2009.09.019.
- H. Zhang, X. Li, F. Zhu, K. Cen, C. Du, and X. Tu, "Plasma assisted dry reforming of methanol for clean syngas production and high-efficiency CO2 conversion", Chem. Eng. J., Vol. 310, No. 1, pp. 114-119, doi: https://doi.org/10.1016/j.cej.2016.10.104.
- T. Takeno and K. Sato, "An excess enthalpy flame theory", Combustion Sience and Technology, Vol. 20, No. 1-2, 1979, pp. 73-84, doi: https://doi.org/10.1080/00102207908946898.
- A. I. Bakry, "Stabilized premixed combustion within atmospheric gas porous inert medium (PIM) burner", Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, Vol. 222, No. 8, 2008, pp. 781-789, doi: https://doi.org/10.1243/09576509JPE608.
- Y. Ju and W. Sun, "Plasma assisted combustion: dynamics and chemistry", Progress in Energy and Combustion Science, Vol. 48, 2015, pp. 21-83, doi: https://doi.org/10.1016/j.pecs.2014.12.002.
- R. K. Singha, A. Shukla, A. Yadav, S. Adak, Z. Iqbal, N. Siddiqui, and R. Bal, "Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nan ocrystalline Ni-ZrO2 catalyst", Appled Energy, Vol. 178, 2016, pp. 110-125, doi: https://doi.org/10.1016/j.apenergy.2016.06.043.