• 제목/요약/키워드: Process Control Model

검색결과 2,951건 처리시간 0.036초

Statistical Process Control Procedure for Integral-Controlled Processes

  • Lee, Jaeheon;Park, Cangsoon
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.435-446
    • /
    • 2000
  • Statistical process control(SPC) and engineering process control(EPC) are two strategies for quality improvement that have been developed independently. EPC seeks to minimize variability by adjusting compensatory variables in order to make the process level close to the target, while SPC seeks to reduce variability by monitoring and eliminating causes of variation. One purpose of this paper is to propose the IMA(0,1,1) model as the in-control process model. For the out-of-control process model we consider two cases; one is the case with a step shift in the level, and the other is the case with a change in the nonstationarity. Another purpose is to suggest the use of an integrated process control procedure with adjustment and monitoring, which can consider the proposed process model effectively. An integrated control procedure will improve the process control activity significantly for cases of the proposed model, when compared to the procedure of using either EPC or SPC, since EPC will keep the process close to the target and SPC will eliminate special causes.

  • PDF

Improvement of the Automobile Control Software Testing Process Using a Test Maturity Model

  • Jang, Jin-Wook
    • Journal of Information Processing Systems
    • /
    • 제14권3호
    • /
    • pp.607-620
    • /
    • 2018
  • The problem surrounding methods of implementing the software testing process has come under the spotlight in recent times. However, as compliance with the software testing process does not necessarily bring with it immediate economic benefits, IT companies need to pursue more aggressive efforts to improve the process, and the software industry needs to makes every effort to improve the software testing process by evaluating the Test Maturity Model integration (TMMi). Furthermore, as the software test process is only at the initial level, high-quality software cannot be guaranteed. This paper applies TMMi model to Automobile control software testing process, including test policy and strategy, test planning, test monitoring and control, test design and execution, and test environment goal. The results suggest improvement of the automobile control software testing process based on Test maturity model. As a result, this study suggest IT organization's test process improve method.

A Role-driven Security and Access Control Model for Secured Business Process Management Systems

  • Won Jae-Kang;Kim Kwang-Hoon
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제14권3호
    • /
    • pp.1-8
    • /
    • 2005
  • This paper formally defines a role-driven security and access control model of a business process in order eventually to provide a theoretical basis for realizing the secured business process management systems. That is, we propose a graphical representation and formal description of the mechanism that generates a set of role-driven security and access control models from a business process modeled by the information control net(ICN) modeling methodology that is a typical business process modeling approach for defining and specifying business processes. Based upon the mechanism, we are able to design and accomplish a secured business process management system that provides an unified resource access control mechanism of the business process management engine domain's and the application domain's. Finally, we strongly believe that the secured access control policies from the role-driven security and access control model can be easily transformed into the RBAC(Role-based Access Control) model that is a standardized security technology for computer and communications systems of commercial and civilian government organizations.

  • PDF

MODEL PREDICTIVE CONTROL OF NONLINEAR PROCESSES BY USE OF 2ND AND 3RD VOLTERRA KERNEL MODEL

  • Kashiwagi, H.;Rong, L.;Harada, H.;Yamaguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.451-454
    • /
    • 1998
  • This paper proposes a new method of Model Predictive Control (MPC) of nonlinear process by us-ing the measured Volterra kernels as the nonlinear model. A nonlinear dynamical process is usually de-scribed as Volterra kernel representation, In the authors' method, a pseudo-random M-sequence is ar plied to the nonlinear process, and its output is measured. Taking the crosscorrelation between the input and output, we obtain the Volterra kernels up to 3rd order which represent the nonlinear characteristics of the process. By using the measured Volterra kernels, we can construct the nonlinear model for MPC. In applying Model Predictive Control to a nonlinear process, the most important thing is, in general, what kind of nonlinear model should be used. The authors used the measured Volterra kernels of up to 3rd order as the process model. The authors have carried out computer simulations and compared the simulation results for the linear model, the nonlinear model up to 2nd Volterra kernel, and the nonlinear model up to 3rd order Vol-terra kernel. The results of computer simulation show that the use of Valterra kernels of up to 3rd order is most effective for Model Predictive Control of nonlinear dynamical processes.

  • PDF

A SCORM-based e-Learning Process Control Model and Its Modeling System

  • Kim, Hyun-Ah;Lee, Eun-Jung;Chun, Jun-Chul;Kim, Kwang-Hoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권11호
    • /
    • pp.2121-2142
    • /
    • 2011
  • In this paper, we propose an e-Learning process control model that aims to graphically describe and automatically generate the manifest of sequencing prerequisites in packaging SCORM's content aggregation models. In specifying the e-Learning activity sequencing, SCORM provides the concept of sequencing prerequisites to be manifested on each e-Learning activity of the corresponding tree-structured content organization model. However, the course developer is required to completely understand the SCORM's complicated sequencing prerequisites and other extensions. So, it is necessary to achieve an efficient way of packaging for the e-Learning content organization models. The e-Learning process control model proposed in this paper ought to be an impeccable solution for this problem. Consequently, this paper aims to realize a new concept of process-driven e-Learning content aggregating approach supporting the e-Learning process control model and to implement its e-Learning process modeling system graphically describing and automatically generating the SCORM's sequencing prerequisites. Eventually, the proposed model becomes a theoretical basis for implementing a SCORM-based e-Learning process management system satisfying the SCORM's sequencing prerequisite specifications. We strongly believe that the e-Learning process control model and its modeling system achieve convenient packaging in SCORM's content organization models and in implementing an e-Learning management system as well.

ARMA 모델을 이용한 적응 모델예측제어에 관한 연구 (Adaptive model predictive control using ARMA models)

  • 이종구;김석준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.754-759
    • /
    • 1993
  • An adaptive model predictive control (AMPC) strategy using auto-regression moving-average (ARMA) models is presented. The characteristic features of this methodology are the small computer memory requirement, high computational speed, robustness, and easy handling of nonlinear and time varying MIMO systems. Since the process dynamic behaviors are expressed by ARMA models, the model parameter adaptation is simple and fast to converge. The recursive least square (RLS) method with exponential forgetting is used to trace the process model parameters assuming the process is slowly time varying. The control performance of the AMPC is verified by both comparative simulation and experimental studies on distillation column control.

  • PDF

고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계 (Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system)

  • 이석주;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

칼만 필터와 뉴럴 네트워크 모델링을 이용한 연속생산공정의 통계적 공정관리 시스템 (Statistical Process Control System for Continuous Flow Processes Using the Kalman Filter and Neural Network′s Modeling)

  • 권상혁;김광섭;왕지남
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.50-60
    • /
    • 1998
  • This paper is concerned with the design of two residual control charts for real-time monitoring of the continuous flow processes. Two different control charts are designed under the situation that observations are correlated each other. Kalman-Filter based model estimation is employed when the process model is known. A black-box approach, based on Back-Propagation Neural Network, is also applied for the design of control chart when there is no prior information of process model. Performance of the designed control charts and traditional control charts is evaluated. Average run length(ARL) is adopted as a criterion for comparison. Experimental results show that the designed control chart using the Neural Network's modeling has shorter ARL than that of the other control charts when process mean is shifted. This means that the designed control chart detects the out-of-control state of the process faster than the others. The designed control chart using the Kalman-Filter based model estimation also has better performance than traditional control chart when process is out-of-control state.

  • PDF

비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어 (Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

쌍일차 모델을 이용한 스팀개질 플랜트의 적응예측제어에 관한 연구 (A study on the adaptive predictive control of steam-reforming plant using bilinear model)

  • 오세천;여영구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.156-159
    • /
    • 1996
  • An adaptive predictive control for steam-reforming plant which consist of a steam-gas reformer and a waste heat steam-boiler was studied by using MIMO bilinear model. The simulation experiments of the process identification were performed by using linear and bilinear models. From the simulation results it was found that the bilinear model represented the dynamic behavior of a steam-reforming plant very well. ARMA model was used in the process identification and the adaptive predictive control. To verify the performance and effectiveness of the adaptive predictive controller proposed in this study the simulation results of steam-reforming plant control based on bilinear model were compared to those of linear model. The simulation results showed that the adaptive predictive controller based on bilinear model provides better performance than those of linear model.

  • PDF