*93 FFAF A o] T3] )= 3 (1993.10,20~22)

ARMA 2% o§8 23 2dlEAlol] %3 47

" olEF. AMT. w4
wEaErle sahgit

Adaptive Model Predictive Control Using ARMA Models

° Jongku Lee, Sukjoon Kim, and Sunwon Park
Department of Chemical Engineering, KAIST

Abstract
An adaptive model predictive control
(AMPC) strategy  using  auto-regression

moving-average (ARMA) models is presented.
The characteristic features of this methodology
are the small computer memory requirement,
high computational speed, robustness, and easy
handling of nonlinear and time varying MIMO
systems. Since the process dynamic behaviors
are expressed by ARMA models, the model
parameter adaptation is simple and fast to
converge. The recursive least square (RLS)
method with exponential forgetting is used to
trace the process model parameters assuming
the process is slowly time varying. The control
performance of the AMPC is verified by both
comparative simulation and experimental studies
on distillation column control.

1. Introduction

During the last 15 years, Model Predictive
Control (MPC) has been recognized as a
prominent practical control methodology and
demonstrated to perform well in a wide range
of process control applications. There are some
representative MPC such as Model Algorithmic
Control (MAC) [Richalet, 1978; Mehra et al.,
1979], Dynamic Matrix Control (DMC) [Culter
and Ramaker, 1979], and Internal Model Control
(IMC) [Garcia and Morari, 1982] that have been
well received by industry. Most MPC techniques
use the weighting sequence models such as the
step or impulse response models that are
physically intuitive, and they can handle
constraints explicitly when they are combined
with on-line optimization code.

The weighting sequence models require
little knowledge of process characteristics (i.e.
system order or time delay) and can be made
by simply giving a step or an impulse process
input to the process. However, they require too.
many parameters to describe the processes,
which cause heavy computational burden and
large computer memory requirement [Morari and
Lee, 1991]. Moreover, their uses are restricted
to the open—loop stable processes, and it is not
easy to update the process models due to large
amount of process model parameters.

Several model predictive controllers based
on the parametric input-output models have
been developed from the concept of adaptive
controllers [Lee and Lee, 1983; Ydistie, 1984;
Cauwenberghe and De Keyser, 1985; Clarke et
al., 1987]. In contrast to the weighting sequence
models, the parametric input-output models have
some positive aspect because they are modeled
by use of small process model parameters 'and
can estimate the model parameters with ease
even when the dynamic behaviors of processes
are changed. The Extended Horizon Adaptive
Control (EHAC) [Ydstie, 1984] and Extended
Prediction Self Adaptive Control (EPSAC)
[Cauwenberghe and De Keyser, 1985] use the
Auto—Regressive Moving—-Average with
eXogenous input (ARMAX) model. But the
ARMAX model is not satisfactory for dealing
with the offset problem, especially when the
load disturbance is rapidly varying [Clarke,
1983]. Clarke et al. (1987a) developed the
Generalized Predictive Controller (GPC) based
on the Controlled Auto-Regressive Integrated
Moving-Average (CARIMA) which are known
to be useful to eliminate the offset. Also, this
can be applied to a nonminimum-phase or an
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open—loop unstable plant which is practically
difficult system to control by the existing model
predictive controllers. Shah et al. (1987) and
Kinnaert (1989) extended the GPC to MIMO
systems.

In the GPC algorithm, the future output
prediction and the predictive control law are
developed by solving the Diophantine equation
of the CARIMA plant model, which increases
the computational burden, especially, in the case

of MIMO processes. Moreover, if the processes .

are time-varying or show severe nonlinear
behavior, the model parameter adaptation is
required to trace the process dynamic behavior
and the numerous Diophantine equation should
be solved whenever the process model is
updated, which makes GPC less robust
numerically [Morari and Lee, 1991]. From the
above reason, the applications of GPC to the
practical chemical processes are few.

In this paper, we propose new Adaptive
Model Predictive Control (AMPC) which is
based on ARMA models. Its control law is
almost the same with DMC or GPC, but the
output prediction part is simplified by using
ARMA models. Its prediction law is based on
the step response model that is calculated from
the ARMA models. Therefore, it does not
require solving the Diophantine equation which
is the main difference from the GPC.  The
merits of AMPC are easy application to complex
MIMO processes, small computer memory
requirement, high computational speed with
numerical robustness, and applicability to
nonlinear and time varying systems.

2. Adaptive Model Predictive Control
Algorithm

2.1 Models and Parameter Estimation
Most SISO processes can be accurately

approximated in the local operating region by
the linear discrete-time model as follows :

Alg My(k) = ¢*B(g Hulk) + d(k) + v(k) (1)
where

Algh =1+ Eag” (2)

Bla = Sbig” 3)

g! is the unit delay operator, k is the present

time, ks is the system time delay, d(-) is the
load disturbance, v(:) is the random noise, y(-)
is the measured process output, u(-) is the
control input. This model form (ARMA) is very
useful for model parameter identification. In the
literature, v(k) has been considered to be of
moving average form :

Clg ™ HE(k) (ARMAX model)
v(k) = (4)
Clg™HE(k)/A (CARIMA model)
! wh&e
ClghH= lg:’t:iq" (5)

€(-) = uncorrelated random sequence
A= differencing operator (1-q™))

The information about v(k) is very important to

overcome the model parameter convergence.
problem which occasionally occurs in model”
parameter identification. However, in practical
situations, there is no prior knowledge about the
weighting of the random sequence, and even
though the polynomial C(g™") is known, the term
v(k) is hardly used to design the model
predictive controllers. In the design of model
predictive controllers, the most important
information is the relationship between the
control inputs and process outputs.

Most practical processes are nonlinear,
while the process models are approximated as
linear models. Thus it is necessary to update
the model parameters as the status of the
process changes even when the process is not
time-varying. The recursive least square (RLS)
algorithm is one of the most widely used
recursive identification methods. It is robust and
easily implemented. A disadvantage with the
least square estimate is that in general v(k) and
process measurements will be found to be
correlated, and then the model parameters will
not converge to its true values. However,
practically, the convergence of the model
parameters is rather important than the
accuracy of them since the desirable feature of
the MPC is robustness to modeling errors.
Therefore, if the signal/noise ratio is not too
small, the recursive least square method with
exponential forgetting can be used for the
adaptation of the time~varying model
parameters.
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2.2 Controller Design

The control law of AMPC is nearly the
same as that of DMC, but the output prediction
is obtained by ARMA models. Consider a
discrete "step response model” which is used in
the basic Dynamic Matrix Control derivation as
follows [Garcia and Morshedi, 1986] :

y(k+i) = yx(k+i) + ,-‘-tx sidulk+i-j) + d(k)

fori=12 -, P ®)
where
= prediction horizon

y*(k+i) = 'iﬁx sjbu(k+i-j), where
I= +

M is the model horizon ()]
sj = step response coefficients

Au(-) = change in input

In DMC algorithm, memory requirement is large
in order to store the history of inputs moves
and the step response model since y*(-) is
calculated by the step response model. That
.causes the insufficient computer memory
problem and heavy computation burden when

DMC is applied to complex MIMO processes.
However, using the ARMA model, we can

calculate y+(-) as follows :

yx (k+i) = —Jg} Gy * (k+i-j)+ ,21 bjux (k+i-j-ka)

i=1,2 .,P - (8
where
yx(-) = y() if i-j<0
u(+) if i-j-ka<0
ux(-) =

ulk-1) if i-j-ka20

Since n, n, ¢« M, the computational burden for
the predicted process output calculation is far
less than that of DMC.

Next, if the model parameters are updated
by the parameter estimator, we have to update
the step response coefficients,
follows :

51,82, ', Sp as

na | m
si= —_Zi a;si-j + j):l bjuli-j~ka), i=1,2 ., P
£ <
©)
where

si-j= 0 if i-j<0

0 if i~j-ka<O
u(-) =
1 if i-j-ka20

and the dynamic matrix is made as follows E

s1 0 - 0

s2 s1 0

. L. . (10)
S1

Sp Sp-1 SP-N+1

where N = control horizon

The process output prediction is done by only

-using the ARMA model, which is numerically
* stable. Then, the predictive control law is given

by minimizing the following objective function.

min #(0) = £ 7D [0+ ) - yaplle+ D1’

. I_ﬁl A2 [auticj- 112 an

st tmn S u(k-1)+ §Au(k+t—1) < U (12)
Yuin € y(K) + ?;smu(ku—n S ymax  (13)

where yo(k+i) is the future setpoints, v and X
are the weights on the process output error and
on the change in the control input, respectively.
In this step, future optimal inputs u(k+i-1) for i
=1, 2, .. ,N are calculated by a QP algorithm
and only the first input u(k) is implemented.

2.3 Extension to MIMO systems

In linear systems, most MIMO processes are
expressed in the transfer function matrix form
as follows :

Gu(s) Giz(s) -+ Gim(s)
Ga(s) Gz(s) - Ga(s)
G(s) = . . .
Gnl(S) GnZ(S) Gnm(S)
Nuls) _Nils) Nim(s)
Dyu(s) Di(s) Dim(s)
= : S 14
Nuls) _Nw(s) . _Nmls)
Dnl(S) DnZ(S) Dnm(S)

where Gy(s) is the transfer function relating the

i output to the j"’ input, n and m are the
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number of the process  outputs and control
inputs, respectively. In order to design the
AMPC for the above MIMO system, we modify
the transfer functions a little to make simple
ARMA models. In each row, we find the lowest
order common denominator of the transfer
functions and based on it, rearrange the
numerators to fit the original transfer functions.

Nu(s) _Nunls) Nim(s)

Da(s) D(s) Di(s) )
G(s) = j j N j (15)

Nuls) _Nwp(s) . _Namls)

Du(s) Dn(S) Dy(s)

where Di(s) is the lowest order common
denominator among the transfer functions in the
i® row and Ni(s) is the rearranged numerator
to satisfy the ij® original transfer function.
Since the denominators on the same row are

common, process outputs are expressed as
follows :
_ _Nu(s) Ui(s) + - + Nim(s) Um(s)
YI(S) = Dl(S)
: (16)
Yuls) = —DailS) Uils) + - ¢ Nom(s) Un(s)

Da(s)

where Yi(s) is the i® output, and Uj(s) is the j
input in the Laplace domain. Then the above
transfer function models can be converted to
make the n-ARMA models.

Ag™h) - 0 q'wﬂn(q’l) = q_kerkq")
: L Y = - Uk)
0 - Aug™) a¥Bu(g) - ¢ Ban(a™)
an
where
Ailg) =1+dlgt+..+ a"m.q"'“
By(g') =bf+blgt + ...+ 0%, 0"
Y(k) = [yi(k), y2(k), ..'.yn(k)]T
Uk) = [uilk), uz(k), ..., um(k) 17

and k¥ is the time delay of the ij™ transfer
function.

The controller design procedures for MIMO
systems are straightforward. The output
predictions and the formulation of Dynamic
Matrix are made through the repetitive vector
multiplication for each process output as in the

case of the SISO system. Also, the predictive
control law is exactly the same as in the SISO
case.

3. Experimental Study with a pilot
distillation column

The top and bottom temperatures of a pilot
scale MeOH distillation column are controlled by
manipulating the heat to the reboiler and the
reflux flow rate. This is a standard dual
temperature control problem that has been
attractive for control study due to strong

_‘interactions and nonlinearity at high purity
- range. These characteristics motivate the use of

adaptive model predictive controllers such as

AMPC.

System dynamics

To characterize the dynamics of the
distillation column, we performed several step
tests within the operating range. Figure 1
shows the responses of the top and bottom
temperatures (y1 and y2) to a step up and a
step down in the reflux flow rate (u;) and the
reboiler heat input (u2). The figure shows the
asymmetry of the output responses to the same
magnitude of input changes in the opposite
directions, which is the typical nonlinear
behavior of distillation columns. We
approximated open-loop output responses as
first order linear models with time delay. The
approximated process models are as follows :

Vi —-185e -033s Ze -067s
- 12.0s+1 6.0s+1 18)
-09e”* 3.56°%%%
28s+1 150s+1
Since the transfer function model is

approximated one, the
mismatch exists.

inherent model/plant

Designs of AMPC and QDMC

The AMPC and QDMC were applied to the
distillation column control. Parameters to be
specified in the design of the QDMC are @
sampling time, prediction horizon or optimization
horizon, control horizon, move suppression
factor, and boundary constraints. In the case of
the AMPC, the process model order, forgetting
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factor, and dead zone. should be specified
additionally. The reflux flow rate (u) is
bounded between 0 and 150 ml/min and the
reboiler heat (uz) between 60 and 90 % of
maximum heat input. Table 1 lists the design
parameters of the AMPC and QDMC. The
tuning parameters were decided through
numerous experimental results of the QDMC.
Among them, we chose the tuning parameters
based on the best control performance under the

integral of the squared error (ISE) criterion.

The AMPC has the same tuning parameters as
the QDMC except for the prediction horizon and
the design parameters about the process model
parameter identification. -

Table 1. The tuning parameters of the AMPC

and QDMC
AMPC QDMC
sampling time 20 sec
redcionlrion 2| vl e 0 s

ve suppression 0.1 1 hori 180
o oo . prediction horizon 48

process model s

order (AB) (33) | control horizon 02
forgetting factor 09 move suppression 0.
dead zone 101 €

Experimental Results

The servo responses of the AMPC and
QDMC are compared. We changed the setpoints
of the top and bottom temperatures so that the
process outputs could cover the wide operating
range. Figure 2 shows the servo responses of
the QDMC and AMPC. In the high purity region
(50<t<70), the top temperature follows its
setpoint very slowly and the bottom temperature
deviate severely from its setpoint in the case of
the QDMC, but the AMPC shows much better
control performance compared with the results
of the QDMC. Next, to test the unknown
disturbance-rejection performance, we change
the feed flow rate from 600 cc/min to 500
cc/min at t=3 min and restore it at t=23 min.
The AMPC shows faster rejection performance
than the QDMC (Figure 3). Table 2 lists the
ISE of the AMPC and QDMC. The ISEs of the
bottom temperature in the case of AMPC are
far smaller than those in the case of QDMC.
From the above results, we can see that the
AMPC is excellent in the setpoint-tracking and
disturbance~rejection when it is applied to

nonlinear processes. The calculation time of the
AMPC is faster than that of QDMC even
though the AMPC includes the parameter
adaptation algorithm, and the size of execution
file of AMPC is much smaller than that of
QDMC.

Table 2. ISE of the QDMC and AMPC
Top temp.| Bottom temp.|Total sum
Setpoint | QDMC | 192.79 191.59 384.38
X Tracking | AMPC | 196.88 107.16 304.04
F Disturb. | QDMC | 8.78 114.10 122.88
Rejection | AMPC 7.49 39.59 47.08
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Figure 3. Disturbance-rejection performance: (a) QDMC (b) AMPC

4. Conclusions

An Adaptive Model Predictive Controller
(AMPC) using ARMA models has been
presented. The characteristic features of the
proposed methodology are small computational
memory requirement, high computational speed,
robustness, and easy handling of nonlinear and
time-varying MIMO processes while showing
good control performance. Since the AMPC uses

Bottom Temo.

ARMA models, the calculation of process output
prediction is simple and does not require
solving the Diophantine equation which is
required in the GPC algorithm. Therefore, the
AMPC algorithm is numerically robust and its
computational speed is very fast even though it
includes the parameter adaptation algorithm.
The control performance of the AMPC has been
verified by the comparative simulation studies
and experimental application to a pilot scale
distillation column. We expect the AMPC to
show * better control performance than other
MPC techniques for nonlinear processes control.
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