• Title/Summary/Keyword: Problem Solution

Search Result 7,200, Processing Time 0.033 seconds

Analysis of an Inverse Heat Conduction Problem Using Maximum Entropy Method (최대엔트로피법을 이용한 역열전도문제의 해석)

  • Kim, Sun-Kyoung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.144-147
    • /
    • 2000
  • A numerical method for the solution of one-dimensional inverse heat conduction problem is established and its performance is demonstrated with computational results. The present work introduces the maximum entropy method in order to build a robust formulation of the inverse problem. The maximum entropy method finds the solution that maximizes the entropy functional under given temperature measurement. The philosophy of the method is to seek the most likely inverse solution. The maximum entropy method converts the inverse problem to a non-linear constrained optimization problem of which constraint is the statistical consistency between the measured temperature and the estimated temperature. The successive quadratic programming facilitates the maximum entropy estimation. The gradient required fur the optimization procedure is provided by solving the adjoint problem. The characteristic feature of the maximum entropy method is discussed with the illustrated results. The presented results show considerable resolution enhancement and bias reduction in comparison with the conventional methods.

  • PDF

An Algorithm for Optimizing over the Efficient Set of a Bicriterion Linear Programming

  • Lee, Dong-Yeup
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.147-158
    • /
    • 1995
  • In this paper a face optimization algorithm is developed for solving the problem (P) of optimizing a linear function over the set of efficient solution of a bicriterion linear program. We show that problem (P) can arise in a variety of practical situations. Since the efficient set is in general a nonoconvex set, problem (P) can be classified as a global optimization problem. The algorithm for solving problem (P) is guaranteed to find an exact optimal or almost exact optimal solution for the problem in a finite number of iterations. The algorithm can be easily implemented using only linear programming method.

  • PDF

On a Two Dimensional Linear Programming Knapsack Problem with the Extended GUB Constrain (확장된 일반상한제약을 갖는 이차원 선형계획 배낭문제 연구)

  • Won, Joong-Yeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • We present a two dimensional linear programming knapsack problem with the extended GUB constraint. The presented problem is an extension of the cardinality constrained linear programming knapsack problem. We identify some new properties of the problem and derive a solution algorithm based on the parametric analysis for the knapsack right-hand-side. The solution algorithm has a worst case time complexity of order O($n^2logn$). A numerical example is given.

  • PDF

THE SOLVABILITY CONDITIONS FOR A CLASS OF CONSTRAINED INVERSE EIGENVALUE PROBLEM OF ANTISYMMETRIC MATRICES

  • PAN XIAO-PING;HU XI-YAN;ZHANG LEI
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.87-98
    • /
    • 2006
  • In this paper, a class of constrained inverse eigenvalue problem for antisymmetric matrices and their optimal approximation problem are considered. Some sufficient and necessary conditions of the solvability for the inverse eigenvalue problem are given. A general representation of the solution is presented for a solvable case. Furthermore, an expression of the solution for the optimal approximation problem is given.

An Algorithm for Determining Consumable Spare Parts Requirement under Avialability Constraint (운용가용도 제약하에서의 소모성 예비부품의 구매량 결정을 위한 해법)

  • 오근태;나윤군
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.83-94
    • /
    • 2001
  • In this paper, the consumable spare parts requirement determination problem of newly procured equipment systems is considered. The problem is formulated as the cost minimization problem with operational availability constraint. Assuming part failure rate is constant during operational period, an analytical method is developed to obtain spare part requirements. Since this solution tends to overestimate the requirements, a fast search simulation procedure is introduced to adjust it to the realistic solution. The analytical solution procedure and the simulation procedure are performed recursively until a near optimal solution is achieved. The experimental results show that the near optimal solution is approached in a fairly short amount of time.

  • PDF

Conformable solution of fractional vibration problem of plate subjected to in-plane loads

  • Fadodun, Odunayo O.;Malomo, Babafemi O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.347-354
    • /
    • 2019
  • This study provides an approximate analytical solution to the fractional vibration problem of thin plate governing anomalous motion of plate subjected to in-plane loads. The method of variable separable is employed to transform the fractional partial differential equations under consideration into a fractional ordinary differential equation in temporal variable and a bi-harmonic plate equation in spatial variable. The technique of conformable fractional derivative is utilized to solve the resulting fractional differential equation and the approach of finite sine integral transform method is used to solve the accompanying bi-harmonic plate equation. The deflection field which measures the transverse displacement of the plate is expressed in terms of product of Bessel and trigonometric functions via the temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem of thin plate in literature. This work shows that conformable fractional derivative is an efficient mathematical tool for tracking analytical solution of fractional partial differential equation governing anomalous vibration of thin plates.

A Comparative Analysis of Effective and Ineffective Problem Solver's Technological Problem Solving Activity (효율적인 문제해결자와 비효율적인 문제해결자의 기술적 문제해결 활동 비교 분석)

  • Kim, Tae-Hoon;Rho, Tae-Cheon
    • Journal of Engineering Education Research
    • /
    • v.10 no.3
    • /
    • pp.93-108
    • /
    • 2007
  • The purpose of this study is to investigate characteristics which are related with effective solution of technological problems. For this, an effective problem solver and an ineffective problem solver have been compared in terms of the problem solving activity with a population of students who are enrolled in College of Engineering, C University in Daejeon. As a result, this paper can be concluded as follows: An effective problem solver differs from an ineffective problem solver in terms of time consumed during problem solution modeling a problem solution identifying a problem cause and frequency and time consumed during evaluating a result.

REMARKS ON UNIQUENESS AND BLOW-UP CRITERION TO THE EULER EQUATIONS IN THE GENERALIZED BESOV SPACES

  • Ogawa, Takayoshi;Taniuchi, Yasushi
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1007-1019
    • /
    • 2000
  • In this paper, we discuss a uniqueness problem for the Cauchy problem of the Euler equation. W give a sufficient condition on the vorticity to show the uniqueness of a class of generalized solution in terms of the generalized solution in terms o the generalized Besov space. The condition allows the iterated logarithmic singularity to the vorticity of the solution. We also discuss the break down (or blow up) condition for a smooth solution to the Euler equation under the related assumption.

  • PDF

GLOBAL SOLUTION AND BLOW-UP OF LOGARITHMIC KLEIN-GORDON EQUATION

  • Ye, Yaojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2020
  • The initial-boundary value problem for a class of semilinear Klein-Gordon equation with logarithmic nonlinearity in bounded domain is studied. The existence of global solution for this problem is proved by using potential well method, and obtain the exponential decay of global solution through introducing an appropriate Lyapunov function. Meanwhile, the blow-up of solution in the unstable set is also obtained.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF