• Title/Summary/Keyword: Problem Solution

Search Result 7,231, Processing Time 0.028 seconds

A Study on Area Division Method to use the Hour-based Vehicle Speed Information (시간단위 차량통행 속도정보의 활용을 위한 구역분할 방법의 연구)

  • Park, Sung-Mee;Moon, Gee-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.201-208
    • /
    • 2010
  • This research is about developing an efficient solution procedure for the vehicle routing problem under varying vehicle moving speeds for hour-based time interval. Different moving speeds for every hour is too difficult condition to solve for this type of combinatorial optimization problem. A methodology to divide the 12 hour based time interval offered by government into 5 different time intervals and then divide delivery area into 12 small divisions first and then re-organizing them into 5 groups. Then vehicle moving speeds are no longer varying in each of the 5 divisions. Therefore, a typical TSP solution procedure may be applied to find the shortest path for all 5 divisions and then connect the local shortest paths to form a delivery path for whole area. Developed solution procedures are explained in detail with 60 points example.

Machining Route Selection with Subcontracting Using Genetic Algorithm (와주를 고려한 가공경로 선정에서의 유전알고르즘 접근)

  • 이규용;문치웅;김재균
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • This paper addresses a problem of machining route selection in multi-stage process with machine group. This problem is considered the subcontracting and the production in-house such as regular and overtime work. the proposed model is formulated as a 0-1 integer programming constraining the avaliable time of each machine for planning period and total overtimes. The objective of the model is to minimize the sum of processing cost, overtime cost, and subcontracting cost. To solve this model, a genetic algorithm(GA) approach is developed. The effectiveness of the proposed GA approach is evaluated through comparisons with the optimal solution obtained from the branch and bound. In results, the same optimal solution is obtained from two methods at small size problem, and the consistent solution is provided by the GA approach at large size problem. The advantage of the GA approach is the flexibility into decision-making process because of providing multiple machining routes.

  • PDF

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

A Tabu Search Heuristic Algorithm for Hierarchical Location Allocation Problem (광대역 융합 가입자 망 설계를 위한 타부서치 알고리즘 개발)

  • Park, Gi-Gyeong;Lee, Yeong-Ho;Kim, Yeong-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.131-135
    • /
    • 2008
  • In this paper, we deal with a hierarchical location-allocation problem in designing the broadband convergence networks (BcN). The objective is to minimize the total cost of switch and cable while satisfying the quality of service (QoS). We formulate the problem as an integer programming model and develop the Tabu Search (TS) heuristic algorithm to find a good feasible solution within a reasonable time limit. Initial solution is obtained by using the tree structure. Three neighborhood generation mechanisms are used by local search heuristic: insertion, switch up, and switch down. In order to demonstrate the effectiveness of the proposed algorithm, we generate lower bounds from nonlinear QoS relaxation problem. We present promising computational results of the proposed solution procedures.

  • PDF

Capacitor Placement in Radial Distribution Systems Using Chaotic Search Algorithm (방사상 배전계통의 커패시터 설치를 위한 카오스 탐색알고리즘)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.124-126
    • /
    • 2002
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, the method employing the chaos search algorithm is proposed to solve optimal capacitor placement problem with reducing computational effort and enhancing optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

  • PDF

AN ITERATIVE ALGORITHM FOR SOLVING THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB+CYD=E

  • Shen, Kai-Juan;You, Chuan-Hua;Du, Yu-Xia
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1233-1245
    • /
    • 2008
  • In this paper, an iterative method is proposed to solve the least-squares problem of matrix equation AXB+CYD=E over unknown matrix pair [X, Y]. By this iterative method, for any initial matrix pair [$X_1,\;Y_1$], a solution pair or the least-norm least-squares solution pair of which can be obtained within finite iterative steps in the absence of roundoff errors. In addition, we also consider the optimal approximation problem for the given matrix pair [$X_0,\;Y_0$] in Frobenius norm. Given numerical examples show that the algorithm is efficient.

  • PDF

A Global Optimization Technique for the Capacitor Placement in Distribution Systems (배전계통 커패시터 설치를 위한 전역적 최적화 기법)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Sang-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.748-754
    • /
    • 2008
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, a global optimization technique, which employing the chaos search algorithm, is applied to solve optimal capacitor placement problem with reducing computational effort and enhancing global optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

THE ITERATION METHOD OF SOLVING A TYPE OF THREE-POINT BOUNDARY VALUE PROBLEM

  • Liu, Xiping;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.475-487
    • /
    • 2009
  • This paper studies the iteration method of solving a type of second-order three-point boundary value problem with non-linear term f, which depends on the first order derivative. By using the upper and lower method, we obtain the sufficient conditions of the existence and uniqueness of solutions. Furthermore, the monotone iterative sequences generated by the method contribute to the minimum solution and the maximum solution. And the error estimate formula is also given under the condition of unique solution. We apply the solving process to a special boundary value problem, and the result is interesting.

  • PDF

POSITIVE SOLUTION FOR FOURTH-ORDER FOUR-POINT STURM-LIOUVILLE BOUNDARY VALUE PROBLEM

  • Sun, Jian-Ping;Wang, Xiao-Yun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.679-686
    • /
    • 2010
  • This paper is concerned with the following fourth-order four-point Sturm-Liouville boundary value problem $u^{(4)}(t)=f(t,\;u(t),\;u^{\prime\prime}(t))$, $0\;{\leq}\;t\;{\leq}1$, ${\alpha}u(0)-{\beta}u^{\prime}(0)={\gamma}u(1)+{\delta}u^{\prime}(1)=0$, $au^{\prime\prime}(\xi_1)-bu^{\prime\prime\prime}(\xi_1)=cu^{\prime\prime}(\xi_2)+du^{\prime\prime\prime}(\xi_2)=0$. Some sufficient conditions are obtained for the existence of at least one positive solution to the above boundary value problem by using the well-known Guo-Krasnoselskii fixed point theorem.

Research of a freedom rate for timetabling problem (시간표 작성 문제의 자유도에 관한 연구)

  • An, Jong-Il;Jo, Seung-Han
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.5
    • /
    • pp.201-206
    • /
    • 2009
  • The timetabling problem is a one of the optimization problem for satisfied a constraints. Most optimization algorithm arrives optimal to use a method that is make a initial solution and modify and reconstruct it repetitively. In case of insufficient resources, it is not easy to obtain initial solution oneself. The most method of make a initial solution is high constrained subject assign first. The freedom rate is a numerical value of degree of how much constrained. In this paper, we define the freedom rate in timetabling problem and experiment its role in timetabling process.

  • PDF