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AN ITERATIVE ALGORITHM FOR SOLVING THE
LEAST-SQUARES PROBLEM OF MATRIX EQUATION
AXB+CYD=E

KAI-JUAN SHEN*, CHUAN-HUA YOU AND YU-XIA DU

ABsSTRACT. In this paper, an iterative method is proposed to solve the
least-squares problem of matrix equation AXB + CYD = E over un-
known matrix pair [X,Y]. By this iterative method, for any initial ma-
trix pair [X1, Y1], a solution pair or the least~-norm least-squares solution
pair of which can be obtained within finite iterative steps in the absence
of roundoff errors. In addition, we also consider the optimal approxima-
tion problem for the given matrix pair [Xp, Yp] in Frobenius norm. Given
numerical examples show that the algorithm is efficient.
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1. Introduction

We firstly introduce some symbols. Denoted by R™*™ be the set of all
m X n real matrices. The superscripts T and + respect the transpose and
Moore-Penrose generalized inverse of matrices. In space R™*", we define inner
product by < A, B >= trace(BT A) for all A,B € R™*™, which generates
the Frobenius norm, i.e., || 4] = /< 4,4 >. Let R(:) be the column space of
a matrix, and vec(.) be the vec operator, that is, vec(4) = (af,ad,...,al)7T,
where A = (a1, ag, ..., an) € R™*", a; € R™, i=1,2,....n. A® B stands for the
kronecker productm of matrices A and B. Furthermore, we say matrices F'
and G is orthogonal each other, if trace(GTF) = 0.

The well-known linear matrix equation
AXB+CYD=FE (1)
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has been widely considered over unknown matrices Xand Y, such as references
[2-5]. In these literatures, the solvability conditions are obtained by using g-
inverse or matrices decomposition (i.e., singular value decomposition (SVD),
generalized SVD, or canonical correlation decomposition (CCD)). However, the
matrices A, B, C, D and E, are experimentally occurring in practice, which may
not satisfy these solvability conditions because of the influence of experimental
errors etc. Therefore, the matrix equation AXB+CY D = E is always inconsis-
tent, we need consider its least-squares problem. The least-squares problem of
matrix equation (1), which has been studied in [6-7] by matrix decomposition,
can be expressed as follows.

Problem 1. it Given matrices A € RPX™, B € R™*X1, C € RP*™ D ¢
R™*4 E ¢ RP*4 find X € R"X")Y € R™>™2 such that

|AXB+CYD —E|| =min for X € R™*™ Y ¢ R™*™2,

In addition, the problem that finds a nearest matrix in the least-squares
solution set of a matrix equation to given matrix is so-called matrix nearness
problem (see [8] for details). The matrix nearness problem associated with the
matrix equation (1) can be described as follows.

Problem II. For given matrices Xo € R™*"2 Yy € R™*™2, find [X,IA/] €
SE, satisfying

XX+ |V - Y|?= min {||X — Xo||®>+||Y - Yo|%},
| oll“+ 1l oll [X,Y]GSE{H olt* + |l oll}

where Sg is the solution set of Problem I

In fact, Problem II is to find the least-norm solution of Problem I, when
Xo=0,Y% =0

The methods using matrix decomposition for matrix equation problem are
feasible but complicated. Peng [9] has constructed an iterative algorithm to
find the symmetric solution of matrix equation AXB = C, the method make it
easier to solve matrix equation problems. Whereafter, Peng [10] has obtained
the symmetric least-squares solution of matrix equation AXB = C by similar
iterative method. Meanwhile, according to the fundamental idea of the classi-
cal conjugate methods, using the orthogonal direction method, Deng and Bai
[11] has obtained the Hermitian minimum F-norm solution of matrix equation
AXB = C and (AX,XB) = (C,D). Furthermore, by constructing iterative
method, the real solution pair of matrix equation AXB + CYD = E has been
derived by Peng [12]. They have showed that, For any initial matrix, the
solutions or least-norm solution can be obtained within finite iterative steps.

The matrix nearness Problem IT occurs frequently in experimental design.
Here the matrix pair [X, Y] may be obtained from experiments, but it may not
be a solution pair of Problem I. The best estimate [X,Y] is the matrix pair
not only is a solution pair of Problem I, but also is the best approximation of
the matrix pair [Xo, Yo] (see [7, 13, 14] for more details).
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However, there is no iterative algorithm constructed to solve the least squares
problem of matrix equation AXB + CYD = E. In this paper, we establish
an iterative method for Problem I. Meanwhile, the matrix nearness Problem
II is also considered. For any initial matrix pair [Xy,Y;], we will show that
the least-squares solution pair and the least-norm least-squares solution pair of
matrix equation (1) can be obtained within finite iterative steps by the iteration
method.

This paper is organized as follows: In section 2, we will give the iterative
method for Problem I. In section 3, for given matrices Xy, Yy, we will show that
the unique solution of Problem II can be found by the least-norm least-squares
solution pair [X * Y*] of the new least-squares problem of matrix equation
AXB+CYD = E where X = X— XO,Y Y -Yp, and E = E— AXyB-CYyD.
Finally, we will offer some numerical examples to illustrate our results.

2. Iterative algorithm for solving Problem I

In this section, we will give the iterative algorithm for solving Problem I,
meanwhile, we will show that the iterative method is feasible. As we all know
that, the least-squares problem of matrix equation can be transformed equally
into finding the solutions of its normal matrix equation, which is always con-
sistent. Therefore, we have the following assertion.

Lemma 1. The solvability of Problem I is equivalent to that of the linear matriz
equations

ATAXBBT + ATCYDBT = ATEBT, )
CTAXBDT + CTcyDDT = CTEDT.
Now, according to matrix equations (2), the iterative algorithm for Problem
I can be expressed as follows:
Algorithm 1

Step 1: Given matrices A € RP*™1, B € R"2*4 C € RP*™ D e R™*4,
E € RP*? and X; € R™M*"2 | Y} € RMiXmz;

Step 2 : Compute
M; = ATEBT - ATAX,;BBT — ATCY,DBT,
N, =CTEDT - CTAX,;BDT - CTcY,DDT,
me( %N ),
= ATAM BBT 4+ ATCN,DBT,
Q1 = CTAMBDT + CTCN,DDT,
k=1
Step 3 : Compute
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| Ri—1 |2
Xp=Xp—1+ Pp_1,
TR T T R P Qe 2
R _ 2
Yo=Y 1+ | B | Qr—1;

I Pe—1 12+ 1| Qe-1 |17
Step 4 : Compute

My = ATEBT — ATAX,BBT — ATCY,,DBT,
N, =CTEDT — CTAXBDT - CTCY,,DDT,

(M 0
R’“'( 0 Nk>’

2
P, = ATAM,BBT + ATCN.DBT + ” ”RR’“ ” ”2Pk_1,
k—1
T T | Ry |I?
Qr = CTAMBDT +C CN,DD” + W—R—”2Qk_1;
k—1

Step 5 : If R = 0, that is, [Xk, Ys| is a solution pair of Problem I, stop
iteration; Otherwise, go to step 3.

Next, we will give some lemmas to analyze the properties of Algorithm 1,
and show that the solution can be obtained within finite steps.

Lemma 2. Suppose that [X,Y] is an arbitrary solution pair of Problem I.
Then

<P X—-Xp>+<QnY-Yi>=| R |} k=1,2,... (3)

Proof. We will complete the proof of (3) by the principle of induction.
Algorithm 1 implies that || Ry, ||2=| Mx |2 + || Nk ||?, then, we have
<P, X-X1>+<Q,Y-Y>
= < ATAMBBT + ATCN,DBT X - X; >
+ < CTAMBDT + CTCN,DDT Y - V1 >
= <M, ATA(X - X;)BBT + ATC(Y —v1)DB” >
+ < Ny, CTA(X — X1)BDT + CTC(Y - Y1)DDT >
= < M;,ATEBT - ATAX:BB” - ATCY,DB" >
+ < N, CTEDT - CTAX,BDT — ¢TCY,DDT >
= || M P+ NP
= | Rd*.
that is, when k = 1, the conclusion (3) holds.

Assume that (3) holds for k = s, i.e., < Ps, X — X; > + < Q,,Y - Y; >=|
R, |2, then
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< Pog1, X = Xop1 > + < Qop1, Y = Yot >
I Rs41 |I?
| Rs |2
| Rot1 |I?
| Rs |I?
=< ATAM,BBT + ATCN,+DBT, X — X,.1 >
+ < CTAM,1BDT + CTCN, 1\ DDT YV — Yop1 >

- <ATAMS+1BBT + ATCN, 1 DBT + P, X - X3+1>

+<CTAMS+1BDT + CTCN,,, DD + Q¥ — Ys+1>

R 2 _ R 2 -
+—” ” 54_1”3 < P87 X — Xs+1 >+ ||”___}32+11_!I2| < st Y - Y9+1 >
Roy | v I B, |I?
=|| M, 2y N812+ﬂ——si———<P,X——X— P>
” s+1 ” ” + “ “ Rs ”2 ] ] “ Ps ”2 T “ Qs ”2 8
| Ros |2 > IR, |12
+o s <W@sY - Y, - Qs >
Il R |12 TP +1Qs 2
R 2 = .
:“ Rs+1 ”2 +E““—]_?%‘[< Pst —Xs >+ < QS,Y_YS > — “ Rs “2]
=|| Rs11 ”2 .
Hence, for all positive integer number k, (3) holds. O

Remark 1. Lemma 2 implies that if R; # 0, then || P; |2 + || Q; ||?# 0. This
result implies that if R; # 0, then Algorithm 1 can’t be terminated.

Lemma 3. For the sequences {R;},{P}, {Qi} generated by Algorithm 1, we
have that
< Ri’Rj >=0, < Piypj >+< Qinj >=0, 4,j= 1a27"')k(k > 2)a7’ # J.
4)
Proof. From the iterative Algorithm 1, we can obtain

MT M, 0
Ry S= J
< Ri, R; >=trace [( 0 NjTNi >]

= tmce(Mf M;) + tmce(NjT N;)

=< My, M; > + < N;, N; >.
Since the property of trace tr(RFR;) = tr(RfRi), it is enough to prove the
conclusion for ¢ > j.
For k = 2, by Lemma 2 and Algorithm 1, it follows that

< Ry, R; >
=< Mz, M1 > + < Ny, N1 >
I Ry |
P2+ @2

< M, - (ATAP,BBT + ATCQ,DB"), M; >
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I Ry |12
FP )2+ 1 @ |2

SR LI p R e
A P+10]

< Q1,CTAMBDT + CTCN,DDT >

<N - (CTAP,BDT +CTCQ1DD), Ny >

< P, ATAMBBT + ATCN,DBT >

B
P f? + 1 @ If?

= My [P+ [ Ny 1P =

LRy |12 2 2

= My |*+ | My J* - || R1 =0, (5)

and

<P25P1>+<Q2,Q1>
| Rz II?
I R

2
+ < CTAM,BDT + CTCN,DDT + H 22 “2 Q1,Q1 >

=< ATAM,BBT + ATCN,DBY + L —="_P,, P, >

=< My, ATAP,BBT + ATCQ,DBT > + < N,,CTAP,BDT
R 2
+07cqpD™ > + 12 p e )

2 i | B2
A |||, 1:1 |||‘2Q1 I [<M2,M1 — My >+ < Ny, Ny — Ny >}
HE LA R+ 1
__I& ||||2R+1 ‘I‘PQl 0 2+ 2 1) + H gj ”z(ll P+ Qo)
_o (6)

Assume that (4) holds for k£ = s, similar to the proofs of (5) and (6), we
get < Ror1,R; >= 0 and < Pst1,Ps > + < Qgy1,Qs >= 0. Therefore,
< Rit1,Ri>=0and < P, P>+ < Qit1,Q; >=0.

Furthermore, when 7 = 1, noting that < R, R; >= 0, < P, Pi > + <
Qs,@1) = 0, we have that

< Rs+1,R1 >
= < Mgp1, M1 >+ < Ngy1, N1 >
| R, |2 T T T T
= <M~ AYAP,BB* + A*CQ,DB" ), My >
B E+T0: 12 )
| Rs |I? T T | AT T
+ < N; — (C*AP,BD* +C*CQsDD"),N; >

I Ps |12+ 11 Qs |2
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TAEYCNE < P,,A"AM,BB” + A"CN,DB" >
8 8
- | R, | T T T T
TP+ <9 AMBDT+ CIONDDT >
I R |f?
T RGP R Q) =0

When j = 2,...,s— 1, according to the assumptions, we have

and

<

+

+

< Rgy1, Rj >
< Ms+1,Mj >+ < N3+1,Nj >
R, |12
<M, - IIIIQ = ” ) HQ(ATAPSBBT+ATCQ5DBT),Mj >
8 8
R, |2
+ <N, - TP l|l|2 : ” 5 HQ(CTAP,,BDT +CTCQ,DDT),N; >
8 8
< My, Mj >+ < Ny, Nj > - Nst I ; [ < P,, ATAM,; BBT
P2+ Q. |l
+ATCN;DBT > + < Q,,CTAM;BD” + CTCN,DD" > ]
| R, |2 IR 12,
TET TGPl P TR Eh > T <
RS
I Rj-1 H2QJ_1 >]
B | R, |I? , .
BT o <PeP>+<QnQ;>)

IBP IR
TP+ Q T TRy P

+ (<P8,Pj_1>+<Qs,Qj_1>)

1239

=0,

Poy1, Py > + < Qs41,Q5 >
2
< AT AM,,BBT + ATCN,,,DBT + Mﬁi“—a, P; >
- I Rs |12 !
2
< CTAMs-}-lBDT + CTCN3+1D-DT + J‘I‘“‘%stQJ’ >
8
R 2
_ W“ Py P>+ <QsQ;>)
8
112 2

I B+ “2QJ I (K Moy, M — M >+ < Nsy1,Nj — Njp1 >)=0.

I B |l

o)

Hence, (4) holds for k = s+ 1. We complete the proof by the induction.

O
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Remark 2. From Lemma 3, we can see that, R; (z =1,2,...,(n1 4+ na)(m

+mg)) are orthogonal each other, that is, they consists of an orthogonal basis

of space R(mtn2)x(mitmz) Therefore, it is certain that there exists a positive
integer number k such that Ry = 0 in the iterative process.

The following lemma from [8] is a directly use for stating our mainly results.

Lemma 4. Suppose that the consistent linear system of My = b has a solu-
tion yo € R(MT), then yo is the least-norm solution of the system of linear
equations.

According to the properties of Kronecker product, then the systems of ma-
trices equations(2) is equivalent to the linear equations

BBT @ AAT BDT ® ATC vee(X) \ [ BT® A B
DBT 9074 DDT@CCT )\ wveey) )=\ DTac ) veclE)

Noting that
vec(AT AHBBT + ATCHDBT)
vee(CT AHBDT + CYCHDDT)
_ ( BBT @ AAT BDT @ ATC vec(H
vec(H
T

m)

_ ( BBT @ AAT BDT @ ATC vec(H)
DBT @ CTA DDT @ CCT vec(H)

DBT @ CTA DDT ®CCT

 n[( BBT®AAT BD'gATC T
DBT®CTA DDTgCCT '
We know that, if we take initial matrices X; = ATAHBBT + ATCH DBT,
Y, = CTAHBDT + CTCHDDT, where H, H are arbitrary, then all X}, and
Y., generated by Algorithm 1, satisfy that

vee(Xs) \ _ p [ ( BBT®AAT BDT®A’C T
vec(Yy) DBT®CTA DD”gcCCT '

Hence, from Lemma 4, we have that [X*,Y™*] generated by the iterative
method, is the solution pair of Problem I, then it is the least-norm solution
pair of which.

Above conclusions on the solution of Problem I can be stated as following
theorem, and its proof is omitted.

Theorem 1. The least-squares Problem I is always consistent, then for arbi-
trary initial matriz pair [X1,Y1], the sequence [Xg, Yi] generated by Algorithm
1, conwerges to its solution pair within at most (n1 + ng)(mi +my) + 1 itera-
tion steps. Furthermore, if we choose the initial matrices X; = ATAHBBT +
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ATCHDBT,Y; = CTAHBDT + CTCHDDT (H,f] are arbitrary), or espe-
cially, let X; =0 € R™M*"2 Y] =0 € R™*™2, then the solution pair [X*,Y*|
obtained by Algorithm 1 is the least-norm solution pair of Problem I.

3. The solution of problem II

For the matrix nearness Problem I, there certainly exists an unique solution
since the solution set of Problem I is a nonempty closed convex cone, then the
linear matrix equations (2) is equivalent to the linear matrix equations

ATA(X — Xo)BBT + ATC(Y — Y,)DBT = AT(E — AXyB - CY,D)BT,

{ CTA(X — Xo)BDT + CTC(Y - Y5)DDT = CT(E — AXoB - CY,D)DT.
which is the normal matrix equation of AXB + CYD = E, here X = X —
Xo, V=vY- Yy, E=E- AXyB — CYyD, then finding the solution of the
Problem II is equivalent to find the least-norm solution pair of the matrix
equations

(7)

ATAXBBT + ATCYDBT = ATEBT,
CTAXBDT + CTCYDDT = CTEDT.

From Theorem 1, by the Algorithm 1, if the initial iterative matrices X 1=
ATAHBBT + ATCHDBT,V, = CTAHBDT + CTCHDDT (H, H are arbi-
trary), or especially, let X; =0¢e Rm*m ¥, =0 € R™>*™_ we can obtain
the unique least-norm solution pair [X*, ¥*] of the matrix equations (7), hence
the solution of Problem II can be obtained by X=X+ Xo,V = Y* + Y.

4. Numerical examples

In this section, will give some numerical examples to illustrate our results.

3 0 -4 0 3
0O -2 9 0 -5
Let matrices A, B,C, D, F as follows, A = —01 g _25 2 -08 ,
0 0 3 0 4
2 5 7T 0 -4
1 0 0 0 O 1 0 0 0 O
01 0 00 0 1 0 0 0
B = 0 01 0 0 |,D= 0 01 0 0 {,
0 0 010 0 0 01 0
0 0 0 0 1 0 0 0 0 1
1 -2 1 0 2 -1 4 6 4
-5 4 -5 =2 3 8§ -2 -1 2
| 3 5 -3 s -2 7 3 2 o0
=19 7 0 -1 |" B=| s 0o 3 1 3
2 7 2 2 0 2 2 1 2
-6 9 -6 -1 9 0 3 0 2
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First, we will find the general solution pair and the least-norm solution pair
of Problem I. However, because of the influence of the errors of calculation, R;
is usually unequal to zero in the iterative process , for arbitrary small enough
positive number ¢, e.g., £ = 1.0e — 010, whenever || Ry ||< € , we stop the
iteration, and [X}, Yy is regarded as a solution pair of Problem I.

If arbitrary initial iterative matrix pair [X1, Y] is

6 0 3 -1

2
18 -3 5 0 _41 g "33 _24 g
Xx=| 0 =3 2 0 8 |,n= ,
16 0 1 -1 0 7 4 1 2
392 0 9 0

2 0 0 -2 3
by Algorithm 1, we have that

2.5615  1.0286  1.0403  3.6974 3.9065
1.2904 -0.2463 -1.5594 0.0244 2.7556

Xg = 1.2736  2.0998 -—-2.1307 1.0392 4.5622 |,
0.3037  1.1790 —0.5670 —1.3276 1.1474
~1.1793 0.5853 —1.1278 —1.4348 0.2333

3.0665 —0.7079 -—3.9220 2.4346  3.8117
—-0.4075 -1.4866 1.7081 —-0.7498 -3.1029
-0.9335 0.2921 3.0780 -0.5654 —0.1883 |’
-0.2583 2.2985  1.3171  2.5659  0.9266

In this case, || Xo ||2 + || Yo ||?= 170.4124, || Ry ||= 2.2845¢— 011 < e.

Yo =

Hence, we obtain a general solution pair [Xg, Yy] of Problem I .

Moreover, if the initial matrices X; = ATAHBB” + ATCHDBT, Y, =
CTAHBDT + CTCHDDT, let

1 3
A I
H=| -3 5 -2 7 1| H= ,
2 -1 5 0 3
4 0 2 -1 3 0 3 9 1
6 1 0 -2 2

then, by the iterative method, we have

1.1707  0.4166  1.0397  1.4249  1.3448
0.1675 —-1.2378 0.0028 —0.5554 —0.6638
Xo=| —-0.3424 0.8080 —0.3068 —0.1361 0.0080 {, (8)
0.9334 1.0033 0.8562  0.8437  1.0770
—0.5640 0.4457  0.1621  0.6061  0.2516
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0.0675 —0.7355 -0.1460 —-0.4756 —0.2674

0.6623 —0.5581 0.2703 —0.1568 0.1113 ©)
0.0675 —0.7355 —0.1460 -0.4756 -0.2674 |’

—0.8112 2.3209 04818 0.9919  0.6302

and || Xg |2 + || Yo [|2= 25.3593, || Ry ||= 2.1856¢ — 011 < e.

According to Theorem 1, the iterative solution pair [Xo, Y5] in (8)-(9) is
the least-norm least squares solution of Problem 1. Especially, if X; = 0 €
R3%5Y; = 0 € R**5, by Algorithm 1, we can also find the least-norm least-
squares solution of Problem I as (8) and (9).

In addition, suppose that the given matrix pair [ Xy, Yy] are

Y =

6 2 0 3 2 PP
a1 25 26 0 3 5
Xo={0 -4 1 7 6 | %= ,
S L s 8 7 2 4 6 -1
9 3 0 -9 4

2 0 9 4 -8

let X = X — Xo, Y=Y- —Yp, E=E- AXoB—-CYpD , then, by the Algorithm 1
and iteration 9 steps, the least-norm solution pair [X * Y*] of matrix equations
(7) is

—0.8837 1.8123 -2.8077 0.3850 1.2355
-0.8581 -4.7108 3.1170 —1.7986 0.0525

X =Xg= 3.9957  1.7881 —0.8497 -2.3199 -5.9086 |,
—4.0451 0.4605 —1.5596 6.9361 —4.4270
-4.4837 —0.9251 -3.6530 -2.4667 5.9214

—-2.6358 -2.5208 —0.1628 -—2.1830 2.2704
-0.1785 —4.2662 —0.6545 -—6.6657 —4.6771
—2.6358 -2.5208 -0.1628 -—2.1830 2.2704 |’
—-8.1298 0.1414 -3.3029 9.6093 —1.6509

and || Ry ||= 4.4103¢— 011 < e.

el

Therefore, the solution pair {X , f’] of Problem II can be obtained by

5.1163 —0.1877 —-2.8077 3.3850 3.2355
- 3.1419 -3.7108 1.1170 3.2014 -0.9475
X=X"+Xo= 3.9957 —2.2119 0.1503 4.6801 0.0914 |,
—1.0451 -0.5305 6.4404 1.9361 -1.4270
—2.4837 -0.9261 5.3470 1.5333 —2.0786

1.3642 —2.5208 -8.1628 —1.1830 0.2704
—2.1785 1.7338 —0.6545 —3.6657 0.3229
4.3642 —0.5208 3.8372  3.8170 1.2704
0.8702  3.1414 -3.3029 0.6093 2.3491

Y=V"4+v =
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5. Conclusions

In this paper, we first introduce an iterative method, that is, Algorithm
1 for finding the least-squares solution of Problem I with unknown matri-
ces X and Y, the sequence [Xj,Ys] generated by Algorithm 1 converges to
its a solution pair within at most (n; + n2)(m1 + ma) + 1 iteration steps in
the absence of roundoff errors. We also prove that if let the initial matrices
X, = ATAHBBT + ATCHDBT Y, = CTAHBDT + CTCHDD™ (H,I;T are
arbitrary), or especially, let X1 = 0 € R™*"2,Y; = 0 € R™*™2, then the
solution pair [X*,Y*] obtained by Algorithm 1 is the least-norm least-squares
solution pair of Problem I. Moreover, the solution of Problem II is represented
by the iterative method. At last, the given examples tested in MATLAB 6.5
verify that the iterative algorithm is feasible.
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