• 제목/요약/키워드: Problem Solution

검색결과 7,200건 처리시간 0.036초

수중 투과성 방파제 주변의 유속장에 대한 해석해 도출 및 분석 (Analytic solution on the velocity field near the submerged permeable breakwater)

  • 김정인;박용성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2022
  • 본 연구에서는 심해 선형파 조건에서 수중 투과성 방파제 주변의 유속장에 대해 nonhomogeneous Riemann-Hilbert problem을 이용한 해석해 및 수치해를 도출하고, 이를 반사계수와 투과계수를 산정하는 데에 활용한다. 여러 개의 얇은 투과성 판이 일렬로 배열되어 수중에 고정되어있고 규칙파가 작용하는 경우, Riemann-Hilbert problem을 정의할 수 있다. 본 연구에서는 얇은 판으로 이루어진 수중 방파제에 대한 homogeneous Riemann-Hilbert problem을 푸는 것을 넘어, 투과성 판으로 이루어진 수중 방파제에 대해 nonhomogeneous Riemann-Hilbert problem을 정의하고, 이에 대해 무한경계조건과 판 근처에서의 유속장 경계조건을 이용해 해석해를 유도하였다. 투과성 방파제의 경우 permeable boundary를 가지므로 제시한 상황은 기하학적 비선형성을 지닌다. 이에 대해 투수성을 기초로 미소 매개변수를 정의하고, 섭동법(perturbation method)을 이용해 유속장에 대한 leading order solution과 first order solution을 도출하였다. Leading order solution은 Evans (1970) 등의 선행연구에서 제시한 해와의 비교를 통해 그 타당성을 검증하였고, First order solution을 이용해 반사계수와 투과계수를 산정하여 방파제의 투수성이 유속장에 미치는 영향을 고려하였다. 아울러 수치해를 도출하여 해석해의 결과와 비교 및 분석하였다. 본 연구에서 제시한 해석해는 방파제에 가해지는 힘을 산정하는 등 다양한 방향으로 활용 가능하며, 향후 수치해나 실험값을 비교, 검증하기 위한 기초 자료로써 활용될 수 있다.

  • PDF

Computational solution for the problem of a stochastic optimal switching control

  • Choi, Won-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.155-159
    • /
    • 1993
  • In this paper, we consider the problem of a stochastic optimal switching control, which can be applied to the control of a system with uncertain demand such as a control problem of a power plant. The dynamic programming method is applied for the formulation of the optimal control problem. We solve the system of Quasi-Variational Inequalities(QVI) using an algoritlim which involves the finite difference approximation and contraction mapping method. A mathematical example of the optimal switching control is constructed. The actual performance of the algorithm is also tested through the solution of the constructed example.

  • PDF

THE BOUNDARY ELEMENT METHOD FOR POTENTIAL PROBLEMS WITH SINGULARITIES

  • YUN, BEONG IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.17-28
    • /
    • 1999
  • A new procedure of the boundary element method(BEM),say, singular BEM for the potential problems with singularities is presented. To obtain the numerical solution of which asymptotic behavior near the singularities is close to that of the analytic solution, we use particular elements on the boundary segments containing singularities. The Motz problem and the crack problem are taken as the typical examples, and numerical results of these cases show the efficiency of the present method.

  • PDF

Network Enlarging Search Technique (NEST) for the Crew Scheduling Problem

  • Paek, Gwan-Ho
    • 한국경영과학회지
    • /
    • 제19권2호
    • /
    • pp.177-198
    • /
    • 1994
  • We consider an algorithm for the Crew Scheduling Problem (CSP) based on the Transportation Problem approach. The main flows of the algorithm are arranged in three steps. First we propose a heuristic algorithm of the greedy principle to obtain an initial feasible solution. Secondary we present a method of formulating CSP into a Modified Transportation Problem format. Lastly the procedures of network search to get the optimal solution are presented. This algorithm can be applied to the general GSP and also to most combinatorial problems like the Vehicle Routing Problems. The computational results show that the large size CSP's could be tackled.

  • PDF

FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF OPTIMAL DIRICHLET BOUNDARY CONTROL PROBLEMS FOR THE BOUSSINESQ EQUATIONS

  • Lee, Hyung-Chun;Kim, Soo-Hyun
    • 대한수학회지
    • /
    • 제41권4호
    • /
    • pp.681-715
    • /
    • 2004
  • Mathematical formulation and numerical solutions of an optimal Dirichlet boundary control problem for the Boussinesq equations are considered. The solution of the optimal control problem is obtained by adjusting of the temperature on the boundary. We analyze finite element approximations. A gradient method for the solution of the discrete optimal control problem is presented and analyzed. Finally, the results of some computational experiments are presented.

NONLINEAR ALGORITHMS FOR A COMMON SOLUTION OF A SYSTEM OF VARIATIONAL INEQUALITIES, A SPLIT EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEMS

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.495-524
    • /
    • 2016
  • In this paper, we propose an iterative algorithm for finding a common solution of a system of generalized equilibrium problems, a split equilibrium problem and a hierarchical fixed point problem over the common fixed points set of a finite family of nonexpansive mappings in Hilbert spaces. Furthermore, we prove that the proposed iterative method has strong convergence under some mild conditions imposed on algorithm parameters. The results presented in this paper improve and extend the corresponding results reported by some authors recently.

A Nash Solution to Predictive Control Problem for a Class of Nonlinear Systems

  • Ahn, Choon-Ki;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.76.5-76
    • /
    • 2002
  • In this paper, we provide a Nash solution to predictive control problem for nonminimum phase singular nonlinear systems. Until now, there is no result on predictive control problem for this class of nonlinear systems. Chen's recent work considered predictive control problem for a class of nonlinear systems with ill-defined relative degree. Since his work is not a result considered in the feedback linearization framework, there is no a result on singular probem in his paper. In contrast to the existing predictive control result, our work considers two main obstacles (singularity and nonminimum phase) in the feedback linearization framework. For a generally formu...

  • PDF

정지궤도 위성의 궤도 선정을 위한 알고리즘 (Algorithms for Determining the Geostationary Satellite Orbital Positions)

  • 김수현;김세헌
    • 한국경영과학회지
    • /
    • 제30권1호
    • /
    • pp.177-185
    • /
    • 2005
  • We consider the optimization problem of the geostationary satellite orbital positions. which is very fundamental and important in setting up the new satellite launching plan. We convert the problem into a discrete optimization problem. However, the converted problem is too complex to find an optimal solution. Therefore, we develope the solution procedures using simulated annealing technique. The results of applying our method to some examples are reported.

NUMERICAL SOLUTION OF A GENERAL CAUCHY PROBLEM

  • El-Namoury, A.R.M.
    • Kyungpook Mathematical Journal
    • /
    • 제28권2호
    • /
    • pp.177-183
    • /
    • 1988
  • In this work, two numerical schemes arc proposed for solving a general form of Cauchy problem. Here, the problem, to be defined, consists of a system of Volterra integro-differential equations. Picard's and Seiddl'a methods of successive approximations are ued to obtain the approximate solution. The convergence of these approximations is established and the rate of convergence is estimated in every case.

  • PDF

다수제품의 수익성 최대화를 위한 설비입지선정 문제 (The Maximal Profiting Location Problem with Multi-Product)

  • 이상헌;백두현
    • 한국경영과학회지
    • /
    • 제31권4호
    • /
    • pp.139-155
    • /
    • 2006
  • The facility location problem of this paper is distinguished from the maximal covering location problem and the flxed-charge facility location problem. We propose the maximal profiting location problem (MPLP) that is the facility location problem maximizing profit with multi-product. We apply to the simulated annealing algorithm, the stochastic evolution algorithm and the accelerated simulated annealing algorithm to solve this problem. Through a scale-down and extension experiment, the MPLP was validated and all the three algorithm enable the near optimal solution to produce. As the computational complexity is increased, it is shown that the simulated annealing algorithm' is able to find the best solution than the other two algorithms in a relatively short computational time.