• Title/Summary/Keyword: Probe measurements

Search Result 399, Processing Time 0.023 seconds

An Experimental Study of Compressor Section Profile in Transonic Flow (천음속 유동하의 압축기 익형에 대한 실험적 연구)

  • 류영진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2001
  • In the continuing quest for increased turbomachinery efficiency, the part played by blade profile shape remains crucial. The application of a heated thin metallic film with CTA(constant temperature anemometer) to the measurements of the laminar and turbulent boundary layer behavior(shock-boundary layer-interaction) in a transonic wind tunnel. Results of measurements with hot-film sensors on transonic compressor blades are extremely difficult to interpret because of ambiguous probe signals due to the complexity of the local flow pattern. In order to get the explicit information and give the designer to interpret characteristic signals from hot-film probes, a method was developed by comparing the results with other measuring technic results.

  • PDF

A Study on the Characteristics of the Radio-Frequency Inductive Discharge Plasma (고주파 유도방전 플라즈마 특성에 관한 연구( I ))

  • 박성근;박상윤;박원주;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.63-66
    • /
    • 1996
  • Electron temperature and electron density were measured in a radio-frequency(rf) inductively coupled plasma using probe measurements. Measurements were made in an argon discharge for pressures from 10 to 100mTorr and input rf power from 100 to 800W. Spatial distribution Electron temperature and electron density were measured for discharge with same aspect ratio. Electron temperature and Electron density were found to depend on both pressure and power. Electron density was creased with increasing pressure, but peaked in a 70mTorr discharge. Radial distribution of the electron density was peaked in the plasma fringes. These results were compared to a simple model of inductively coupled plasmas.

  • PDF

Thermal denaturation analysis of protein

  • Miyazawa, Mitsuhiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1628-1628
    • /
    • 2001
  • Near infrared (NIR) spectroscopy is a powerful technique for non-destructive analysis that can be obtained in a wide range of environments. Recently, NIR measurements have been utilized as probe for quantitative analysis in agricultural, industrial, and medical sciences. In addition, it is also possible to make practical application on NIR for molecular structural analysis. In this work, Fourier transform near infrared (FT-NIR) measurements were carried out to utilize extensively in the relative amounts of different secondary structures were employed, such as Iysozyme, concanavalin A, silk fibroin and so on. Several broad NIR bands due to the protein absorption were observed between 4000 and $5000\;^{-1}$. In order to obtain more structural information from these featureless bands, second derivative and Fourier-self-deconvolution procedures were performed. Significant band separation was observed near the feature at $4610\;^{-1}$ ,. Particularly the peak intensity at $4525\;^{-1}$ shows a characteristic change with thermal denaturation of fibroin. The structural information can be also obtained by mid-IR and CD spectral. Correlation of NIR spectra with protein structure is discussed.

  • PDF

Comparison of Torsional Vibration Measurement Techniques

  • Verrecas, B.;Janssens, K.;Britte, L.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.441-441
    • /
    • 2012
  • Noise and vibration performance plays an important role in the development of rotating components, such as engines, drivelines, transmission systems, compressors and pumps. The presence of torsional vibrations and other specific phenomena require the dynamic behaviour of systems and components to be designed accurately in order to avoid comfort and durability related problems. This paper provides an overview of the instrumentation and challenges related to torsional vibration testing. The accuracy and performance of five measurement techniques (high-speed incremental encoder, dual beam laser interferometer, zebra tape, zebra disc, direct pulse measurements with magnetic probe) is investigated by measurements on a Fiat Punto 1.4 liter engine. The potential sources of error are discussed to explain the inaccuracies of each technique.

  • PDF

The Electrical and Optical Characteristics of Silica Sand by Terahertz Electromagnetic Pulses (테라헤르츠 전자기 펄스를 이용한 이산화규소의 전기적 광학적 특성)

  • 전태인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.202-206
    • /
    • 2001
  • Using THz time-domain spectroscopy (THz-TDS), the power absorption, the index of refraction, and the real conductivity of silica sand are measured from 0.1[Thz] to 0.5[Thz] frequency range. It is impossible to measure the characterization of the silica sand by simple electrical measurements using mechanical contacts, e.g., Hall effect or four-point probe measurements. However, the THz-TDS technique can measure not only electrical but also optical characterization of he sample. Also this technique can measure frequency dependent results. Especially, the real conductivity was increased according to THz frequency. This is unusual material compare with metal and semiconductor materials; the measured real conductivity are not followed by the simple Drude theory.

  • PDF

A Study on the Measurement Technique of the Grounding Mesh Resistance by Field Measurements (현장실측에 의한 메시(Mesh)접지저항 출정기법 연구)

  • 한기붕;김삼수;정세중;이상익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.426-429
    • /
    • 1999
  • In this paper, we have provided the measurement technique of the grounding mesh resistance by field measurements. The standard of measurement is specified in the IEEE Std 81.2-1991 and JEAC 5001-1988, which is the the fall-of-potential method by test-current injection, but this method is difficult to apply at field, where is small around a electric power substation of domestic. For the convenient measurement method, space of assistant probe and quantity of test-current injection are changed step for step. As the result, ' the proposed measurement technique of grounding mesh resistance is that the space of current and potential probes must be fixed at 150rn from a grounding mesh, the test-current injection has to keep 5A or more.

  • PDF

SAMPLING ERROR ANALYSIS FOR SOIL MOISTURE ESTIMATION

  • Kim, Gwang-Seob;Yoo, Chul-sang
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.209-222
    • /
    • 2000
  • A spectral formalism was applied to quantify the sampling errors due to spatial and/or temporal gaps in soil moisture measurements. The lack of temporal measurements of the two-dimensional soil moisture field makes it difficult to compute the spectra directly from observed records. Therefore, the space-time soil moisture spectra derived by stochastic models of rainfall and soil moisture was used in their record. Parameters for both models were tuned with Southern Great Plains Hydrology Experiment(SGP'97) data and the Oklahoma Mesonet data. The structure of soil moisture data is discrete in space and time. A design filter was developed to compute the sampling errors for discrete measurements in space and time. This filter has the advantage in its general form applicable for all kinds of sampling designs. Sampling errors of the soil moisture estimation during the SGP'97 Hydrology Experiment period were estimated. The sampling errors for various sampling designs such as satedlite over pass and point measurement ground probe were estimated under the climate condition between June and August 1997 and soil properties of the SGP'97 experimental area. The ground truth design was evaluated to 25km and 50km spatial gap and the temporal gap from zero to 5 days.

  • PDF

Micelle Studies of Dodecyltrimethylammonium Bromide in Water as Probed by Benzene: Effect on Shapes and Sizes of Micelles

  • Yoon Seob Lee;Kyu Whan Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.599-602
    • /
    • 1993
  • Micellization process of dodecyltrimethylammonium bromide (DTAB) was studied by using the aromatic probe (benzene) which dissolved in aqueous DTAB solutions. Proton NMR chemical shift measurements of DTAB and DTAB-benzene system showed that benzene molecules solubilized near the micelle-water interface and that the solubilization sites within the micelles are different as the DTAB concentration is passing through 32.0 mM (hereafter we refer this concentration as the second CMC). The change of solubilization sites is also confirmed by abrupt changes of the chemical shifts and relaxation rates of benzene protons in DATB-benzene system at this concentration. It was revealed from the electrical conductivity and viscosity measurements that the solubilization of benzene caused the DTAB micelles to swell out and that the micelles prepared after the second CMC had a greater swelling effect than those prepared before the second CMC. The transition point which reflects the saturation of benzene molecules on the solubilization sites of micelles was observed at one benzene/micellized DTAB mole ratio from the electrical conductivity measurements. Along the different concentration of DTAB solution, this transition point is appeared clearly after the second CMC. From these results it is suggested that the shapes and/or sizes of DTAB micelles of the spherical micelle region prepared after the second CMC are different from those prepared before the second CMC.

Development of Hard-wired Instrumentation and Control for the Neutral Beam Test Facility at KAERI

  • Jung Ki-Sok;Yoon Byung-Joo;Yoon Jae-Sung;Seo Min-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.359-365
    • /
    • 2006
  • Since the start of the KSTAR (Korea Superconducting Tokamak Advanced Research) project, Instrumentation and Control (I&C) of the Neutral Beam Test Facility (NB-TF) has been striving to answer diverse requests arising from various facets during the project's development and construction phases. Hard-wired electrical circuits have been designed, tested, fabricated, and finally installed to the relevant parts of the system. In relation to the vacuum system I&C, controlling functions for the rotary pumps, a Roots pump, two turbomolecular pumps, and four cryosorption pumps have been constructed. I&C for the ion source operation are the temperature and flow rate signal monitoring, Langmuir probe signal measurements, gradient grid current measurements, and arc detector circuit. For the huge power system to be monitored or safely operated, many temperature measurement functions have also been implemented for the beam line components like the neutralizer, bending magnet, ion dump, and calorimeter. Nearly all of the control and probe signals between the NB test stand and the control room were made to be transmitted through the optical cables. Failures of coolant flow or beam line vacuum pressure were made to be safely blocked from influencing the system by an appropriate interlock circuit that will shut down the extraction voltage application to the system or prevent damages to the vacuum components. Preliminary estimation of the beam power through the calorimetric measurement shows that 87.9% of the total power of the 60kV/18A beam with 200 seconds duration is absorbed by the calorimeter surface. Most of these I&C results would be highly appropriate for the construction of the main NBI facility for the KSTAR national fusion research project.

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.