• Title/Summary/Keyword: Probe Inductance

Search Result 13, Processing Time 0.021 seconds

Modeling of a Non-contact Type Precision Magnetic Displacement Sensor (비접촉식 정밀 변위 측정용 자기센서 모델링)

  • Shin, Woo-Cheol;Hong, Jun-Hee;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

Bandwidth Enhancement of Equilateral Triangular Microstrip Patch Antenna using Reactance Variation (리액턴스의 변화를 이용한 정삼각형 마이크로스트립 패치 안테나의 대역폭 개선)

  • Lee, Won-Hui;Lee, Jae-Wook;Jeon, Seung-Gil;Choi, Hong-Ju;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.638-647
    • /
    • 2003
  • Triangular patches have been studied, both theoretically and experimentally. We feund that provided radiation characteristics similar to those of rectangular patches, but with smaller size. In this paper, we designed an equilateral triangular microstrip patch antenna using cavity model analysis. Then, in order to improve narrow bandwidth, we add capacitive gap and air gap. Capacitive gap is located with square shape beside feeding point on the patch, and air gap is inserted between substrate dielectric and ground plane to adjust probe inductance. The analysis of characteristics and effects of each component was performed by commercial simulation tool, Ensemble 5.0. Throughout the simulation and experiment, we found the possibility of bandwidth enhancement in triangular microstrip antenna.

Design and Crosstalk Analysis of MEMS Probe Connector System (누화 특성 감소를 위한 MEMS 프로브 커넥터 시스템의 설계)

  • Bae, Hyeon-Ju;Kim, Jong-Hyeon;Lee, June-Sang;Pu, Bo;Lee, Jae-Joong;Nah, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.177-186
    • /
    • 2012
  • In this paper, we propose a design method that the crosstalk of probe connector pins satisfy the limitation of -30 dB. The parameters(inductance and capacitance) were extracted in the grid-structured probe connector pin system, and it is shown that the new parameters are easily calculated with increasing ground pin numbers using the previously calculated parameters. In addition, the crosstalk reduction algorithm by employing more grounds around the signal pin has been suggested, and it is confirmed that the suggested method is quite effective especially for the reduction of inductive couplings. Finally, we suggested the correlation between the pitch and the length of the pins to satisfy the crosstalk limitation of -30 dB with the given number of ground pins, which will be quite useful when design a probe connector pin system.

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

Measurement of Joint Resistance of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag Superconducting Tape by Field decay Technique (자장감쇠법을 이용한 $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag 초전도선재의 접합저항 측정)

  • Kim, Jung-Ho;Lee, Seung-Muk;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • We fabricated a closed coils by using resistive-joint method and the joint resistance of the coils were estimated by field decay technique in liquid nitrogen. We used the Runge-kutta method for the numerical analysis to calculate the decay properties. The closed coil was wound by $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag tape. Both ends the tape were overlapped and soldered to each other. The current was induced in a closed coils by external magnetic flux density. Its decay characteristic was observed by means of measuring the magnetic flux density generated by induced current at the center of the closed coil with hall sensor. The joint resistance was calculated as the ratio of the inductance of the loop to the time constants. The joint resistances were evaluated as a function of critical current of loop, contact length, sweep time, and external magnetic flux density in a contact length of 7 cm. It was observed that joint resistance was dependent on contact length of a closed coil, but independent of critical current, sweep time, and external magnetic flux density. The joint resistance was measured to be higher for a standard four-probe method, compared with that for the field decay technique. This implies that noise of measurement in a standard four-probe method is larger than that of field decay technique. It was estimated that joint resistance was $8.0{\times}10^{-9}{\Omega}$ to $11.4{\times}10^{-9}{\Omega}$ for coils of contact length for 7 cm. It was found that 40Pb/60Sn solder are unsuitable for persistent mode.

Chip Pin Parasitic Extraction by Using TDR and NA (TDR 및 NA를 이용한 Chip Pin Parasitic 추출)

  • 이현배;박홍준
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.899-902
    • /
    • 2003
  • Chip Pin Parasitic은 실제 Chip Pad에서부터 Bonding Wire를 통한 Package Lead Frame까지를 의미한다. 여기서, Lead Frame 및 Bonding Wire에서 Inductance 및 작은 저항이 보이고, Chip Pad에서의 Capacitance, 그리고 Pad 부터 Ground까지의 Return Path에서 발생하는 저항이 보인다. 이들을 모두 합하면 L, R, C의 Series로 나타낼 수 있다. 본 논문에서는 이런 Chip Pin Parasitic을 추출 하기 위해서 TDR(Time Domain Reflectometer)과 NA(Network Analyzer)를 사용하였는데, TDR의 경우 PCB를 제작하여 Chip을 Board위에 붙인 후 Time Domain에서 측정 하였고 NA의 경우 Pico Probe를 이용하여 Chip pin에 직접 Probing해서 Smith Chart를 통하여 Extraction 값을 추출했다. 이 경우, NA를 이용한 측정이 좀 더 정확한 Parasitic 값을 추출할 수 있으리라 예상되겠지만, 실제로 Chip이 구동하기 위해서는 Board위에 있을 때의 상황도 고려해야 하기 때문에 TDR 추출 값과 NA 추출 값을 모두 비교하였다.

  • PDF

The study on X-ray generation in the Coaxial Plasma focus Device (동축 플라즈마 집속장치에서의 x-선 방출에 관한 연구)

  • 엄영현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.65-69
    • /
    • 1989
  • Mather type dense plasma focus device was develooped for the feasibili쇼 study in its application to the x-ray lithography. To etermine the electrical characteristics,the temporal begavior of the discharge current and the voltage was measured by using the Rogowski coil and the high voltage probe respectively. The results are 9 $\mu\textrm{s}$ of the period, 18m$\Omega$ of resistance and 0.16$\mu$Η of inductance. The average current sheath velocity was measured by the light signal emitted at the moving plasma sheath. The light signal was detected through two fiber bundles. When the applied voltage was 13 kV and the initial jpressure of argon was 21.8 Pa, the best plasma focus was occurred. The x-ray emission characteristics from the plasma focus was determined by the x-ray pictures taken by pinhole camera. It is focus that the plasma was focused at 1.4 cm distant position above the center electrode and its diameter was about 1.0 m.

  • PDF

Study on the Projectile Velocity Measurement Using Eddy Current Probe (와전류 탐촉자를 이용한 총구 탄속 측정에 관한 연구)

  • Shin, Jungoo;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.83-86
    • /
    • 2015
  • Nowadays the weapon systems are employed air bursting munition (ABM) as smart programmable 40 mm shells which have been developed in order to hit the target with programmed munition that can be air burst after a set distance in the battlefield. In order to improve the accuracy of such a bursting time, by measuring the speed of the munition from the barrel, weapon systems calculate the exact time of flight to the target and then the time information must be inputted to the munition. In this study, we introduce a device capable of detecting a shot at K4 40 mm automatic grenade. The shot is composed of a rotating copper band to convert linear motion into rotary motion when it passes through the barrel, the steel section is exert the effect of fragment and aluminum section to give fuze information. The aluminum section was used to detect munition using eddy current method. To measure muzzle velocity by means of non-contact method, two eddy current probes separated 10 cm was employed. Time interval between two eddy current probe detection times was used as muzzle velocity. The eddy current probe was fabricated U-shape Mn-Zn ferrite core with enamelled copper wire, and 200 kHz alternating current was used to detect inductance change. Measured muzzle velocity using the developed sensor was compared to the Doppler radar system. The difference was smaller than 1%.

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

High-Frequency Modeling of Printed Spiral Coil Probes for Radio-Frequency Interference Measurement (무선주파수 간섭 측정을 위한 Printed Spiral Coil (PSC) 프로브의 고주파 모델링)

  • Kim, yungmin;Song, Eakhwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • In this paper, a new high-frequency equivalent circuit model of printed spiral coils (PSCs) for radio-frequency interference (RFI) measurement has been proposed. To achieve high-frequency modeling, the proposed model consists of distributed components designed based on the design parameters of the PSCs. In addition, an analytic model for PSCs based on T-pi conversion has been proposed. To investigate the feasibility of the proposed model for RFI measurement, the transfer function between a microstrip line and a PSC has been extracted by combining the proposed model and mutual inductance. The self-impedances of the proposed model and the transfer function have been successfully validated using three-dimensional field simulation and measurements, revealing noticeable correlations up to a frequency of 6 GHz. The proposed model can be employed for high-frequency probe design and RFI noise estimation in the gigahertz range wireless communication bands.