• Title/Summary/Keyword: Probability Assessment

Search Result 945, Processing Time 0.026 seconds

Bayesian Estimation based K-1 Gas-Mask Shelf Life Assessment using CSRP Test Data (CSRP 시험데이터를 사용한 베이시안 추정모델 기반 K-1 방독면 저장수명 분석)

  • Kim, Jong-Hwan;Jung, Chi-jung;Kim, Hyunjung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper presents a shelf life assessment for K-1 military gas masks in the Republic of Korea using test data of Chemical Materiels Stockpile Reliability Program(CSRP). For the shelf life assessment, over 2,500 samples between 2006 and 2015 were collected from field tests and analyzed to estimate a probability of proper and improper functionality using Bayesian estimation. For this, three stages were considered; a pre-processing, a processing and an assessment. In the pre-processing, major components which directly influence the shelf life of the mask were statistically analyzed and selected by applying principal component analysis from all test components. In the processing, with the major components chosen in the previous stage, both proper and improper probability of gas masks were computed by applying Bayesian estimation. In the assessment, the probability model of the mask shelf life was analyzed with respect to storage periods between 0 and 29 years resulting in between 66.1 % and 100 % performances in accuracy, sensitivity, positive predictive value, and negative predictive value.

Development of a Risk Assesment Model for Excavator Work (굴착기 투입 작업의 위험성 평가모델 개발)

  • Kang, Sumin;Ra, Bohyun;Yang, Yejin;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.133-134
    • /
    • 2022
  • Recently, the criteria for assessing industrial accidents have been replaced by the mortality rate. It was found that the number of deaths from excavation work was the highest among construction machinery. The risk assessment is being conducted, however the industrial accident mortality rate has not decreased. Accordingly, this study aims to provide the basic for the create of a risk assessment model specialized in construction work at excavator. It provides absolute value from the risk model which is capable of delivery the probability of a disaster. In addition, we provide a relative risk model that compares the risk through scores between detailed works. The relative risk model is combined by likelihood and severity; the likelihood indicates the frequency of accidents and the severity indicates seriousness of fatal accidents. A variable that reflects the conditions of the construction site was added to the risk assessment model based on past disaster cases. And using the concepts of probability and average, the risk assessment process was quantified and used as an objective indicator. Therefore, the model is expected to reduce disasters by raising the awareness of disasters.

  • PDF

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Failure Probability Evaluation of Pressure Tube using the Probabilistic Fracture Mechanics (확률론적 파괴역학 기법을 이용한 압력관의 파손확률 평가)

  • Son, Jong-Dong;Oh, Dong-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • In order to evaluate the integrity of Zr-2.5Nb pressure tubes, probabilistic fracture mechanics(PFM) approach was employed. Failure assessment diagram(FAD), plastic collapses, and critical crack lengths(CCL) were used for evaluating the failure probability as failure criteria. The Kr-FAD as failure assessment diagram was used because fracture of pressure tubes occurred in brittle manner due to hydrogen embrittlement of material by deuterium fluence. The probabilistic integrity evaluation observed AECL procedures and used fracture toughness parameters of EPRI and recently announced theory. In conclusion, the probabilistic approach using the Kr-FAD made it possible to determine major failure criterion in the pressure tube integrity evaluation.

An Investigation into Capsizing Accident and Potential Technology for Vessel Stability Assessment

  • Long, Zhan-Jun;Jeong, Jae-Hun;Jung, Jin-Woo;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2013
  • In this paper, ship accidents are analyzed briefly and the main objective is to investigate a potential technological approach for risk assessment of vessel stability. Ship nonlinear motion equation and main parameters that induce ship capsizing in beam seas have analyzed, the survival probability of a ferry in random status have estimated and finally find out a risk assessment concept for ship's intact stability estimation by safe basin simulation method. Since a few main parameters are considered in the paper, it is expected to be more accurately for estimating ship survival probability when considering ship rolling initial condition and all other impact parameters in the future research.

Stochastic Remaining Fatigue Life Assessment Considering Crack Inspection Results (균열 검사 결과를 고려한 선체 잔류 피로 수명의 확률론적 예측)

  • Park, Myong-Jin;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In general, an inspection schedule is established based on the long-term fatigue life during the design stage. However, in the design stage, it is difficult to clearly identify the uncertainty factors affecting long-term fatigue life. In this study, the probabilistic fatigue life assessment was conducted in accordance with the methodology of DNV-GL. Firstly, The initial crack distribution estimated through the initial crack propagation analysis was updated by reflecting the results of crack inspection. Secondly, the updated crack distribution was compared with the initial crack distribution, and the probability of failure was updated with the effect of crack inspection.

Statistics and Probability Distribution of Total Coliforms in Wastewater (하수에서의 대장균수 확률분포 특성 분석)

  • Jun, Sang Min;Song, Inhong;Jeong, Han Seok;Kang, Moon Seong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.105-111
    • /
    • 2013
  • Probability distribution of microbes in wastewater is a crucial factor to be determined for microbial risk assessment associated with its reuse. The objective of this study was to investigate probability distribution of an indicator microorganism in wastewater. Daily total coliform counts measured from nationwide wastewater treatment plants in 2010 by the Ministry of Environment were used for statistical analysis. Basic statistics and probability distributions were estimated in the three different spatial scales using the MS Excel software and FARD2006 model. Overall, wastewater from manure and livestock treatment plants demonstrated greater median coliform counts than from sewage and village treatment plants. Generalized logistic (GLO) and 2-parameter Weibull (WBU2) appeared to be the two probability distributions that fitted best for total coliform numbers in wastewater. The study results of microbial statistics and probability distributions would provide useful data for quantitative assessment of microbial risk from agricultural wastewater reuse.

Failure Probability Estimation of Flaw in CANDU Pressure Tube Considering the Dimensional Change (가동중 중수로 압력관의 외경과 두꼐 변화를 고려한 결함의 파손확률 예측)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2305-2311
    • /
    • 2002
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate fur the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.

Substation Reliability Assessment Considering Non-Exponential Distributions And Restorative Actions

  • Kim, Gwang-Won;Lee, Kwang Y.
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.155-160
    • /
    • 2003
  • Reliability assessment of power systems has been an important topic for the past several decades. It is becoming even more important nowadays as the power market moves toward a new competitive environment. This paper deals with two topics on reliability assessment. The first is how to select probability distributions and determine their parameters to model the probabilistic events in a power system. The second is how to consider restorative actions in the assessment, which directly influence reliability indices. This paper proposes simple but convincing alternative solutions on the two topics. In the case study, this paper shows the influences of the probability distributions that are used in power system modeling.

A Study on the Substation Reliability Assessment Using Weibull Distribution (와이블분포를 이용한 변전소 신뢰도 평가에 관한 연구)

  • Kim, Gwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.1
    • /
    • pp.7-14
    • /
    • 2002
  • In power system study, relibility assessment has been an important topic during past several decards because sudden power interruption can bring about enormous economic loss. although the size of a substation is smaller than that of generation system or transmission system, switching actions after fault(s) make reliability assessment of substation rather complex situations such as switching actions easily and permit various probability distributions in describing substation elements. Despite this ability of Monte Carlo simulation, one-parameter exponential distribution is still popular in this reliability assessment. This paper examines the characteristics of several two-parameter probability distributions, and offers new parameter decision rule based on average and variance of the target to be modelled. In case study, this paper shows the profits by using Weibull distribution which is one of two-parameter probabilistic distributions instead of exponential one.