• Title/Summary/Keyword: Probabilistic Safety Analysis

Search Result 377, Processing Time 0.031 seconds

Reliability-Based Design Optimization using Semi-Numerical Strategies for Structural Engineering Applications

  • Kharmanda, G.;Sharabatey, S.;Ibrahim, H.;Makhloufi, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture, and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO developments show its efficiency and applicability in this context. So we present some recent structural engineering applications demonstrate the efficiency of these developed RBDO methods.

Driver's Behavioral Pattern in Driver Assistance System (운전자 사용자경험기반의 인지향상 시스템 연구)

  • Jo, Doori;Shin, Donghee
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.579-586
    • /
    • 2014
  • This paper analyzes the recognition of driver's behavior in lane change using context-free grammar. In contrast to conventional pattern recognition techniques, context-free grammars are capable of describing features effectively that are not easily represented by finite symbols. Instead of coordinate data processing that should handle features in multiple concurrent events respectively, effective syntactic analysis was applied for patterning of symbolic sequence. The findings proposed the effective and intuitive method for drivers and researchers in driving safety field. Probabilistic parsing for the improving this research will be the future work to achieve a robust recognition.

Review of Crash Landing Load Factor (추락착륙 하중배수에 대한 고찰)

  • Bae, Hyo-gil;Kim, Do-Hyung;Park, Jea Sung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • When an abnormal landing occurs, aircraft structures should be designed to guarantee occupants survivability without preventing egress. To find out fire root causes at crash, lots of fixed aircraft crash tests were conducted. Appropriate crash load factors were established with the comprehension of structural behavior based on dynamic analysis and investigation of human tolerance. Cargo restraint criteria were set up considering passengers safety and operational cost while analyzing past cargo aircraft accident data using a probabilistic approach. Reviewing results of past crash tests, current crash landing load factor was appreciated physically, medically, and economically.

Condition assessment of aged underground water tanks-Case study

  • Zafer Sakka;Ali Saleh;Thamer Al-Yaqoub;Hasan Karam;Shaikha AlSanad;Jamal Al-Qazweeni;Mohammad Mosawi;Husain Al-Baghli
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.493-504
    • /
    • 2024
  • This paper presents the methodology and results for the investigation of the structural safety of 40 aged underground water tanks to support the weight of photovoltaic (PV) systems that were supposed to be placed on their roof reinforced concrete (RC) slabs. The investigation procedure included (1) review of available documents; (2) visual inspection of the roof RC slabs; (3) carrying out a series of nondestructive (ND) tests; and (4) analysis of results. Out of the 40 tanks, eleven failed the visual inspection phase and were discarded from further investigation. The roof RC slabs of the tanks that passed the visual inspection were subjected to a series of ND tests that included infrared thermography, impact echo, ultrasonic pulse velocity (UPV), Schmidt hammer, concrete core compressive strength, and water-soluble chloride content. The NDT results proved that eight more tanks were not suitable to support the PV systems. Based on the results of the visual inspection and testing, a probabilistic decision-making criterion was established to reach a decision regarding the structural integrity of the roof slabs. The study concluded that the condition of the drainage filter was essential in protecting the tanks and its intact presence can be used as a strong indication of the structural integrity of the roof RC slabs.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

A Three-Dimensiomal Slope Stability Analysis in Probabilistic Solution (3차원(次元) 사면(斜面) 안정해석(安定解析)에 관한 확률론적(確率論的) 연구(研究))

  • Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.75-83
    • /
    • 1984
  • The probability of failure is used to analyze the reliability of three dimensional slope failure, instead of conventional factor of safety. The strength parameters are assumed to be normal variated and beta variated. These are interval estimated under the specified confidence level and maximum likelihood estimation. The pseudonormal and beta random variables are generated using the uniform probability transformation method according to central limit theorem and rejection method. By means of a Monte-Carlo Simulation, the probability of failure is defined as; $P_f=M/N$ N: Total number of trials M: Total number of failures Some of the conclusions derived. from the case study include; 1. Three dimensional factors of safety are generally much higher than 2-D factors of safety. However situations appear to exist where the 3-D factor of safety can be lower than the 2-D factor of safety. 2. The $F_3/F_2$ ratio appears to be quite sensitive to c and ${\phi}$ and to the shape of the 3-D shear surface and the slope but not to be to the unit weight of soil. 3. From the two models (normal, beta) considered for the distribution of the factor of safety, the beta distribution generally provides lager than normal distribution. 4. Results obtained using the beta and normal models are presented in a nomgraph relating slope height and slop angle to probability of failure.

  • PDF

A Reliability Analysis on Sliding of Offshore Gravity Platform (중력식 해양구조물의 활훈에 대한 신뢰도해석)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.37-50
    • /
    • 1986
  • The uncertainties encountered in the stability analysis for the foundation of offshore structures on clay are formulated in probabilistic terms and used to evaluate the reliability of the foundation design. The major sources of uncertainty are: soil properties, f.ave loads, and methods of analysis. The major part of the uncertainty in safety factor is contributed by the uncertainty in the undrained shear strength. All sources of uncertainties that affect the shear strength of clay are modeled and systematically analyzed. The in situ undrained shear strengths are evaluated by laboratory tests and cone penetration tests. The undrained shear strengths from the laboratory test and CPT, respectively at Statfjord B site in the North Sea, are used as an example in risk analysis. Using the CPT alone, the failure probability on sliding of gravity platform at Statfjord B is much larger than the failure probability using the laboratory undrained shear strengths. The major uncertainty of using the CPT as the estimate of th2 undrained shear strength of clay results from the correlation between the cone resistance and the undrained shear strength.

  • PDF

RSM-based Probabilistic Reliability Analysis of Axial Single Pile Structure (축하중 단말뚝구조물의 RSM기반 확률론적 신뢰성해석)

  • Huh Jung-Won;Kwak Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.51-61
    • /
    • 2006
  • An efficient and accurate hybrid reliability analysis method is proposed in this paper to quantify the risk of an axially loaded single pile considering pile-soil interaction behavior and uncertainties in various design variables. The proposed method intelligently integrates the concepts of the response surface method, the finite difference method, the first-order reliability method, and the iterative linear interpolation scheme. The load transfer method is incorporated into the finite difference method for the deterministic analysis of a single pile-soil system. The uncertainties associated with load conditions, material and section properties of a pile and soil properties are explicitly considered. The risk corresponding to both serviceability limit state and strength limit state of the pile and soil is estimated. Applicability, accuracy and efficiency of the proposed method in the safety assessment of a realistic pile-soil system subjected to axial loads are verified by comparing it with the results of the Monte Carlo simulation technique.

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.

Characterization of Domestic Well Intrusion Events for the Safety Assessment of the Geological Disposal System (심지층 처분시스템의 안전성평가를 위한 국내 우물침입 발생 특성 평가)

  • Kim, Jung-Woo;Cho, Dong-Keun;Ko, Nak-Youl;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In the safety assessment of the geological disposal system of the radioactive wastes, the abnormal scenarios, in which the system is impacted by the abnormal events, need to be considered in addition to the reference scenario. In this study, characterization and prediction of well intrusion as one of the abnormal events which will impact the disposal system were conducted probabilistically and statistically for the safety assessment. The domestic well development data were analyzed, and the prediction methodologies of the well intrusion were suggested with a computation example. From the results, the annual well development rate per unit area in Korea was about 0.8 well/yr/km2 in the conservative point of view. Considering the area of the overall disposal system which is about 1.5 km2, the annual well development rate within the disposal system could be 1.2 well/yr. That is, it could be expected that more than one well would be installed within the disposal system every year after the institutional management period. From the statistical analysis, the probabilistic distribution of the well depth followed the log-normal distribution with 3.0363 m of mean value and 1.1467 m of standard deviation. This study will be followed by the study about the impacts of the well intrusion on the geological disposal system, and the both studies will contribute to the increased reliability of safety assessment.