• Title/Summary/Keyword: Probabilistic Models

Search Result 461, Processing Time 0.026 seconds

Review on Probabilistic Seismic Hazard Analysis of Capable Faults (단층지진원 확률론적 지진재해도 분석에 관한 고찰)

  • 최원학;연관희;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.28-35
    • /
    • 2002
  • The probabilistic seismic hazard analysis for engineering needs several active fault parameters as input data. Fault slip rates, the segmentation model for each fault, and the date of the most recent large earthquake in seismic hazard analysis are the critical pieces of information required to characterize behavior of the faults. Slip rates provide a basis for calculating earthquake recurrence intervals. Segmentation models define potential rupture lengths and are inputs to earthquake magnitude. The most recent event is used in time-dependent probability calculations. These data were assembled by expert source-characterization groups consisting of geologists, geophysicists, and seismologists evaluating the information available for earth fault. The procedures to prepare inputs for seismic hazard are illustrated with possible segmentation scenarios of capable fault models and the seismic hazards are evaluated to see the implication of considering capable faults models.

  • PDF

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

The Development and Application of Policy Formulation Methodology Using Probabilistic System Dynamics (확률적 시스템 다이나믹스를 이용한 정책구조 수립 방법론과 그 응용)

  • 조형래;이진주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.8 no.2
    • /
    • pp.9-25
    • /
    • 1983
  • A new approach to cross impact analysis using probabilistic system dynamics(PSD) is presented in this article. The previous models using PSD consist of system dynamics models as a basis which are interacting with cross impact analysis (CIA) sectors. In this model, the policy impact analysis part is separated from the CIA sectors and is constituted an independent subsectors of the model. The policy subsector is designed to separate the policy impact and provide feedback both to the system dynamics base model and cross impact analysis sectors. The new technique is applied to the forecasting, assessment and policy formulation of air pollution in Seoul metropolitan area in 2,000. The results show that the new tool consider policy effects more effectively than the previous PSD models.

  • PDF

PROCEDURE FOR APPLICATION OF SOFTWARE RELIABILITY GROWTH MODELS TO NPP PSA

  • Son, Han-Seong;Kang, Hyun-Gook;Chang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1065-1072
    • /
    • 2009
  • As the use of software increases at nuclear power plants (NPPs), the necessity for including software reliability and/or safety into the NPP Probabilistic Safety Assessment (PSA) rises. This work proposes an application procedure of software reliability growth models (RGMs), which are most widely used to quantify software reliability, to NPP PSA. Through the proposed procedure, it can be determined if a software reliability growth model can be applied to the NPP PSA before its real application. The procedure proposed in this work is expected to be very helpful for incorporating software into NPP PSA.

Multi-Vehicle Tracking Adaptive Cruise Control (다차량 추종 적응순항제어)

  • Moon Il ki;Yi Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

Probabilistic Models for Local Patterns Analysis

  • Salim, Khiat;Hafida, Belbachir;Ahmed, Rahal Sid
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.145-161
    • /
    • 2014
  • Recently, many large organizations have multiple data sources (MDS') distributed over different branches of an interstate company. Local patterns analysis has become an effective strategy for MDS mining in national and international organizations. It consists of mining different datasets in order to obtain frequent patterns, which are forwarded to a centralized place for global pattern analysis. Various synthesizing models [2,3,4,5,6,7,8,26] have been proposed to build global patterns from the forwarded patterns. It is desired that the synthesized rules from such forwarded patterns must closely match with the mono-mining results (i.e., the results that would be obtained if all of the databases are put together and mining has been done). When the pattern is present in the site, but fails to satisfy the minimum support threshold value, it is not allowed to take part in the pattern synthesizing process. Therefore, this process can lose some interesting patterns, which can help the decider to make the right decision. In such situations we propose the application of a probabilistic model in the synthesizing process. An adequate choice for a probabilistic model can improve the quality of patterns that have been discovered. In this paper, we perform a comprehensive study on various probabilistic models that can be applied in the synthesizing process and we choose and improve one of them that works to ameliorate the synthesizing results. Finally, some experiments are presented in public database in order to improve the efficiency of our proposed synthesizing method.

Advanced Intensity Measures for Probabilistic Seismic Demand Model of Nonstructural Components Considering the Effects of Earthquake (지진에 의한 영향을 고려한 비구조물 확률론적 내진응답모델링을 위한 향상된 지진강도)

  • Hur, Ji-eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.8-14
    • /
    • 2017
  • Nonstructural components, such as electrical equipment, have critical roles in the proper functionality of various infrastructure systems. Some of these devices in certain facilities should operate even under strong seismic shaking. However, it is challenging to define each mechanical and operational failure and determine system failure probabilities under seismic shaking due to the uncertainties in earthquake excitations and the diversity of electrical equipment, among other factors. Therefore, it is necessary to develop effective and practical probabilistic models for performance assessment of electrical equipment considering variations in equipment features and earthquakes. This study will enhance the understanding of the effect of rocking behavior on nonstructural equipment, and linear-to-nonlinear behavior of restrainers. In addition, this study will generate probabilistic seismic demand models of rigid equipment for a set of conventional and novel intensity measures.

BEYOND LINEAR PROGRAMMING

  • Smith, Palmer W.;Phillips, J. Donal;Lucas, William H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.3 no.1
    • /
    • pp.81-91
    • /
    • 1978
  • Decision models are an attempt to reduce uncertainty in the decision making process. The models describe the relationships of variables and given proper input data generate solutions to managerial problems. These solutions may not be answers to the problems for one of two reasons. First, the data input into the model may not be consistant with the underlying assumptions of the model being used. Frequently parameters are assumed to be deterministic when in fact they are probabilistic in nature. The second failure is that often the decision maker recognizes that the data available are not appropriate for the model being used and begins to collect the required data. By the time these data has been compiled the solution is no longer an answer to the problem. This relates to the timeliness of decision making. The authors point out throught the use of an illustrative problem that stocastic models are well developed and that they do not suffer from any lack of mathematical exactiness. The primary problem is that generally accepted procedures for data generation are historical in nature and not relevant for probabilistic decision models. The authors advocate that management information system designers and accountants must become more familiar with these decision models and the input data required for their effective implementation. This will provide these professionals with the background necessary to generate data in a form that makes it relevant and timely for the decision making process.

  • PDF

Reliability analysis of simply supported beam using GRNN, ELM and GPR

  • Jagan, J;Samui, Pijush;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.739-749
    • /
    • 2019
  • This article deals with the application of reliability analysis for determining the safety of simply supported beam under the uniformly distributed load. The uncertainties of the existing methods were taken into account and hence reliability analysis has been adopted. To accomplish this aim, Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM) and Gaussian Process Regression (GPR) models are developed. Reliability analysis is the probabilistic style to determine the possibility of failure free operation of a structure. The application of probabilistic mathematics into the quantitative aspects of a structure and improve the qualitative aspects of a structure. In order to construct the GRNN, ELM and GPR models, the dataset contains Modulus of Elasticity (E), Load intensity (w) and performance function (${\delta}$) in which E and w are inputs and ${\delta}$ is the output. The achievement of the developed models was weighed by various statistical parameters; one among the most primitive parameter is Coefficient of Determination ($R^2$) which has 0.998 for training and 0.989 for testing. The GRNN outperforms the other ELM and GPR models. Other different statistical computations have been carried out, which speaks out the errors and prediction performance in order to justify the capability of the developed models.

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.