Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Published : 2009.04.30

Abstract

A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.

지구기후모델을 이용하여 예측된 (1) 물성치와 (2) 현재 및 미래의 표면 에너지 입력상수의 가변성을 고려한 동결 및 융해깊이를 예측하기 위하여 확률론적 접근법이 도입되었다. 확률론적 접근법을 예시하기 위하여 극지방에서의 융해깊이 예측을 고려해보았다. 특히 확률론적 융해깊이 예측을 위하여 몬테카를로 시뮬레이션과 함께 Stefan 공식이 사용되었다. 시뮬레이션 결과는 물성치의 가변성을 보여주었다. 표면 에너지 입력상수와 온도 데이터는 융해깊이를 예측하는데 상당한 불확실성을 야기시킬 수 있다.

Keywords

References

  1. Andersland, O. B. and Ladanyi, B. (1994) An Introduction to Frozen Ground Engineering. Chapman & Hall
  2. A.H-S and Tang, W.H. (1975) Probability Concepts in Engineering Planning and Design, Vol. I, John Wiley & Sons Inc.
  3. Departments of the Army and Air Force (1966) Arctic and Subarctic Construction, Calculation Methods for Determination of Freeze and Thaw in Soils. U.S. Army Technical Manual TM-5-8526m, U.S. Air Force manual AFM 88-19, Chapter 6
  4. Duncan, J. M. (2000) Factor of Safety and Reliability in Geotechnical Engineering. Journal of Geotechnical Engineering, ASCE, Vol. 126, No. 4 https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)
  5. Gates, W. L. (1992a) The Validation of Atmospheric Models. PCMDI Report No. 1, Lawrence Livermore National Laboratory
  6. Gates, W. L (1992b) AMIP: The Atmospheric Model Intercomparison Project. Bulletin of the American Meteorogical Society, Vol.73 https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
  7. Gates, W. Lawrence, J. S. Boyle, C. C. Covey, C. G. Dease, C. M. Doutriaux, R. S. Drach, M. Fiorino, P. J. Gleckler, J. J. Hnilo, S. M. Marlais, T. J. Phillips, G. L. Potter, B. D. Santer, K. R. Sperber, K. E. Taylor, and D. N. Williams (1998) An Overview of The Results of the Atmospheric Model Intercomparison Project, PCMDI Report No. 45
  8. Lunardini, V. J (1981) Heat Transfer in Cold Climates. Van Nostrand Reinhold Company
  9. McGuffie, K. and Henderson-Sellers, A. (1997) A Climate Modeling Primer. John Wiley & Sons Inc.
  10. Palisade Corporation (2000) Guide to Using @RISK-Risk Analysis and Simulation Add-In for Microsoft Excel. Version 4, March
  11. Phoon, K.-K. and Kulhawy, F. H (1999) Characterization of Geotechnical Variability. Canadian Geotechnical Journal, Vol. 36 https://doi.org/10.1139/cgj-36-4-612
  12. Picard, H. (1988) A probabilistic Model for Coastal Landslides. Master of Science Report, Dept. of Civil Engineering, Oregon State University, Corvallis, Oregon