• Title/Summary/Keyword: Probabilistic Data Association

Search Result 119, Processing Time 0.024 seconds

Performance analysis of automatic target tracking algorithms based on analysis of sea trial data in diver detection sonar (수영자 탐지 소나에서의 해상실험 데이터 분석 기반 자동 표적 추적 알고리즘 성능 분석)

  • Lee, Hae-Ho;Kwon, Sung-Chur;Oh, Won-Tcheon;Shin, Kee-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.415-426
    • /
    • 2019
  • In this paper, we discussed automatic target tracking algorithms for diver detection sonar that observes penetration forces of coastal military installations and major infrastructures. First of all, we analyzed sea trial data in diver detection sonar and composed automatic target tracking algorithms based on track existence probability as track quality measure in clutter environment. In particular, these are presented track management algorithms which include track initiation, confirmation, termination, merging and target tracking algorithms which include single target tracking IPDAF (Integrated Probabilistic Data Association Filter) and multitarget tracking LMIPDAF (Linear Multi-target Integrated Probabilistic Data Association Filter). And we analyzed performances of automatic target tracking algorithms using sea trial data and monte carlo simulation data.

A Variable Dimensional Structure with Probabilistic Data Association Filter for Tracking a Maneuvering Target in Clutter Environment (클러터 환경하에서 기동표적의 추적을 위한 가변차원 확률 데이터 연관 필터)

  • 안병완;최재원;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.747-754
    • /
    • 2003
  • An enhancement of the probabilistic data association filter is presented for tracking a single maneuvering target in clutter environment. The use of the variable dimensional structure leads the probabilistic data association filter to adjust to real motion of a target. The detection of the maneuver for the model switching is performed by the acceleration estimates taken from a bias estimator of the two stage Kalman filter. The proposed algorithm needs low computational power since it is implemented with a single filtering procedure. A simple Monte Carlo simulation was performed to compare the performance of the proposed algorithm and the IMMPDA filter.

A Study of JPDA(Joint Probabilistic Data Association) to Decrease Track Coalescence & Switch in a Cluttered Environments (클러터 환경에서 Track Coalescence & Switch 감소를 위한 JPDA 기법연구)

  • Song, Dae-Buem
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.334-342
    • /
    • 2012
  • Data association is important technology which designate final destination in the target tracking. The joint probabilistic data association(JPDA) algorithm provides excellent ability to maintain track on multiple targets. Currently, it is not easily implemented in real time because of track coalescence & switch. The aim of this paper is to develop probabilistic filters that increase JPDA's sensitivity and decrease track coalescence & switch in a cluttered environments.

Probabilistic Graphical Model for Transaction Data Analysis (트랜잭션 데이터 분석을 위한 확률 그래프 모형)

  • Ahn, Gil Seung;Hur, Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.4
    • /
    • pp.249-255
    • /
    • 2016
  • Recently, transaction data is accumulated everywhere very rapidly. Association analysis methods are usually applied to analyze transaction data, but the methods have several problems. For example, these methods can only consider one-way relations among items and cannot reflect domain knowledge into analysis process. In order to overcome defect of association analysis methods, we suggest a transaction data analysis method based on probabilistic graphical model (PGM) in this study. The method we suggest has several advantages as compared with association analysis methods. For example, this method has a high flexibility, and can give a solution to various probability problems regarding the transaction data with relationships among items.

Multiple Vehicle Tracking in Urban Environment using Integrated Probabilistic Data Association Filter with Single Laser Scanner (단일 레이저 스캐너와 Integrated Probabilistic Data Association Filter를 이용한 도심환경에서의 다중 차량추적)

  • Kim, Dongchul;Han, Jaehyun;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.33-42
    • /
    • 2013
  • This paper describes a multiple vehicle tracking algorithm using an integrated probabilistic data association filter (IPDAF) in urban environments. The algorithm consists of two parts; a pre-processing stage and an IPDA tracker. In the pre-processing stage, measurements are generated by a feature extraction method that manipulates raw data into predefined geometric features of vehicles as lines and boxes. After that, the measurements are divided into two different objects, dynamic and static objects, by using information of ego-vehicle motion. The IPDA tracker estimates not only states of tracks but also existence probability recursively. The existence probability greatly assists reliable initiation and termination of track in cluttered environment. The algorithm was validated by using experimental data which is collected in urban environment by using single laser scanner.

An Indoor Localization Algorithm based on Improved Particle Filter and Directional Probabilistic Data Association for Wireless Sensor Network

  • Long Cheng;Jiayin Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3145-3162
    • /
    • 2023
  • As an important technology of the internetwork, wireless sensor network technique plays an important role in indoor localization. Non-line-of-sight (NLOS) problem has a large effect on indoor location accuracy. A location algorithm based on improved particle filter and directional probabilistic data association (IPF-DPDA) for WSN is proposed to solve NLOS issue in this paper. Firstly, the improved particle filter is proposed to reduce error of measuring distance. Then the hypothesis test is used to detect whether measurements are in LOS situations or NLOS situations for N different groups. When there are measurements in the validation gate, the corresponding association probabilities are applied to weight retained position estimate to gain final location estimation. We have improved the traditional data association and added directional information on the original basis. If the validation gate has no measured value, we make use of the Kalman prediction value to renew. Finally, simulation and experimental results show that compared with existing methods, the IPF-DPDA performance better.

Comparison of the Tracking Methods for Multiple Maneuvering Targets (다중 기동 표적에 대한 추적 방식의 비교)

  • Lim, Sang Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • Over last decade Multiple Target Tracking (MTT) has been the subject of numerous presentations and conferences [1979-1900]. Various approaches have been proposed to solve the problem. Representative works in the problem are Nearest Neighbor (NN) method based on non-probabilistic data association (DA), Multiple Hypothesis Test (MHT) and Joint Probabilistic Data Association (JPDA) as the probabilistic approaches. These techniques have their own advantages and limitations in computational requirements and in the tracking performances. In this paper, the three promising algorithms based on the NN standard filter, MHT and JPDA methods are presented and their performances against simulated multiple maneuvering targets are compared through numerical simulations.

  • PDF

Study of Target Tracking Algorithm using iterative Joint Integrated Probabilistic Data Association in Low SNR Multi-Target Environments (낮은 SNR 다중 표적 환경에서의 iterative Joint Integrated Probabilistic Data Association을 이용한 표적추적 알고리즘 연구)

  • Kim, Hyung-June;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • For general target tracking works by receiving a set of measurements from sensor. However, if the SNR(Signal to Noise Ratio) is low due to small RCS(Radar Cross Section), caused by remote small targets, the target's information can be lost during signal processing. TBD(Track Before Detect) is an algorithm that performs target tracking without threshold for detection. That is, all sensor data is sent to the tracking system, which prevents the loss of the target's information by thresholding the signal intensity. On the other hand, using all sensor data inevitably leads to computational problems that can severely limit the application. In this paper, we propose an iterative Joint Integrated Probabilistic Data Association as a practical target tracking technique suitable for a low SNR multi-target environment with real time operation capability, and verify its performance through simulation studies.

Design of Robust Fuzzy-Logic Tracker for Noise and Clutter Contaminated Trajectory based on Kalman Filter

  • Byeongil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.249-256
    • /
    • 2024
  • Traditional methods for monitoring targets rely heavily on probabilistic data association (PDA) or Kalman filtering. However, achieving optimal performance in a densely congested tracking environment proves challenging due to factors such as the complexities of measurement, mathematical simplification, and combined target detection for the tracking association problem. This article analyzes a target tracking problem through the lens of fuzzy logic theory, identifies the fuzzy rules that a fuzzy tracker employs, and designs the tracker utilizing fuzzy rules and Kalman filtering.

(Theoretical Analysis and Performance Prediction for PSN Filter Tracking) (PSN 픽터의 해석 및 추적성능 예측)

  • Jeong, Yeong-Heon;Kim, Dong-Hyeon;Hong, Sun-Mok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.166-175
    • /
    • 2002
  • In this paper. we predict tracking performance of the probabilistic strongest neighbor filter (PSNF). The PSNF is known to be consistent and superior to the probabilistic data association filter (PDAF) in both performance and computation. The PSNF takes into account the probability that the measurement with the strongest intensity in the neighborhood of the predicted target measurement location is not target-originated. The tracking performance of the PSNF is quantified in terms of its estimation error covariance matrix. The estimation error covariance matrix is approximately evaluated by using the hybrid conditional average approach (HYCA). We performed numerical experiments to show the validity of our performance prediction.