• 제목/요약/키워드: Pro- mutants

검색결과 32건 처리시간 0.025초

Rhizoctonia solani 길항세균 Pseudomonas fluorescens의 Tn5 삽입 돌연변이주 분리 및 특성 (Isolation and Characterization of Tn5 Insertion Mutants of Pseudomonas fluorescens Antagonistic to Rhizoctonia solani)

  • 박서기;박기범;김기청
    • 한국식물병리학회지
    • /
    • 제10권1호
    • /
    • pp.39-46
    • /
    • 1994
  • Pseudomonas fluorescens Biovar III strains S-2 antagonistic to Rhizoctonia solani was subjected to Tn5 mutagenesis by the transposon vector pGS9. Ampicillin and kanamycin resistant (Ampr, Kmr) transconjugants were recovered at a frequency of 1.3$\times$10-7 per initial recipient cell, when recipient cells were washed twice in TE buffer before conjugation. Of the ca. 3000 transconjugants, a frequency of noninhibitory (Inh-), nonfluorescent (Flu-) and auxotorphic (Pro-) mutants were 0.27%, 0.47% and 0.40%, respectively. In these mutants, all Inh- mutants showed the same colony morphology as wild type, whereas all Flu- and Pro- mutants inhibited the growth of R. solani. These mutants were also susceptible to chloramphenicol, indicating only the Tn5 element, except for parts of pGS9, was integrated into the recipient genome. In a Southern blot analysis, the Tn5 element inserted into one site on the chromosome for each of the chosen mutants. However, Tn5 insertion sites of Inh-, and Pro- mutants were differed in each other. These indicate that the genes essential for R. solani inhibition, fluorescent production and auxotrophic are chromosomally located, but not linked to each other.

  • PDF

Characterization of Aspergillus niger Mutants Deficient of a Protease

  • Chung, Hea-Jong;Park, Seung-Moon;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • 제30권3호
    • /
    • pp.160-165
    • /
    • 2002
  • Aspergillus niger has been used as a host to express many heterologous proteins. It has been known that the presence of an- abundant protease is a limiting factor to express a heterologous protein. The protease deficient mutant of A. niger was obtained using UV-irradiation. A total of $1{\times}10^5$ spores were irradiated with $10{\sim}20%$ survival dose of UV, 600 $J/m^2$ at 280 nm, and the resulting spores were screened on the casein-gelatin plates. Ten putative protease deficient mutants showing the reduced halo area around colonies were further analyzed to differentiate the protease deficient mutant from other mutant types. Among ten putative mutants, seven mutants showed significant growth defect on nutrient rich medium and two mutants appeared to be the secretory mutants, which resulted in the impaired secretion of extracellular proteins including proteases. A mutant $pro^--20$ showed reduced halo zone without any notable changes in growth rate. In addition, the starchdegrading and glucose oxidase activities in the culture filtrate of $pro^--20$ mutant showed the similar range as that of the parental strain, which suggested that the $pro^--20$ mutant ought to be the protease deficient mutant rather than a secretory mutant. The reduced proteolytic activity of the $pro^--20$ was demonstrated using SDS-fibrin zymography gel. The reduced extracellular proteolysis was quantified by casein degradation assay and, comparing with the parental strain, less than 30% residual extracellular protease activity was detected in the culture filtrate of the $pro^--20$ mutant. The bio-activity of an exogenously supplemented hGM-CSF(human Granulocyte-Macrophage Colony Stimulating Factor) in the culture filtrate of $pro^--20$ mutant was detected until eight times more diluted preparations than that of the parental strain.

In Vitro Evolution of Lipase B from Candida antarctica Using Surface Display in Hansenula polymorpha

  • Kim, So-Young;Sohn, Jung-Hoon;Pyun, Yu-Ryang;Yang, In-Seok;Kim, Kyung-Hyun;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1308-1315
    • /
    • 2007
  • Lipase B from Candida antarctica (CalB) displayed on the cell surface of H. polymorpha has been functionally improved for catalytic activity by molecular evolution. CalB was displayed on the cell surface by fusing to a cell-wall anchor motif (CwpF). A library of CalB mutants was constructed by in vivo recombination in H. polymorpha. Several mutants with increased whole-cell CalB activity were acquired from screening seven thousand transformants. The two independent mutants CalB 10 and CalB 14 showed an approximately 5 times greater whole-cell activity than the wild-type. When these mutants were made as a soluble form, CalB 10 showed 6 times greater activity and CalB 14 showed an 11 times greater activity compared with the wild-type. Sequence analyses of mutant CALB genes revealed amino acid substitutions of $Leu^{278}Pro$ in CalB10 and $Leu^{278}Pro/Leu^{219}Gln$ in CalB14. The substituted $Pro^{278}$ in both mutants was located near the proline site of the ${\alpha}$10 helix. This mutation was assumed to induce a conformational change in the ${\alpha}$10 helix and increased the $k_{cat}$ value of mutant CalB approximately 6 times. Site-directed mutagenized CalB, LQ ($Leu^{219}Gln$) was secreted into the culture supernatant at an amount of approximately 3 times more without an increase in the CalB transcript level, compared with the wild-type.

Spacing Effect of the Intervening Sequences between Ribosome Binding Site and the Initiation Codon on Expression of Bacillus thuringiensis $\delta$-Endotoxin

  • Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Park, Jae-Young;Shim, Hee-Jin;Woo, Soo-Dong;Boo, Kyung-Saeng;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제6권1호
    • /
    • pp.81-85
    • /
    • 2003
  • To verify importance of the intervening sequence between the ribosome binding site (RBS) and the initiation codon for expression of Bacillus thuringiensis $\delta$-endotoxin, the pProMu, containing SphI and NcoIsites between RBS and the initiation codon of the cry1Ac gene, and the deletion derivatives of pProMu were constructed and transformed into the B. thuringiensis subsp. kurstaki $Cry^{-B}$ strain. The pProMu-ΔSphIhad identical six bases of intervening sequence to pProAc though the arrangement of sequence was different. Other mutants containing pProMu had 1 or 10 or 14 bases between RBS and the initiation codon. Among deletion mutants, only ProMu-ΔSphI/CB only produced 130 kDa typical bipyramidal crystals like those seen for ProAc/CB. However, ProMu/CB, $ProMu-{\Delta}NcoI$, and ProMu-ΔSphI+NcoIdid not produce Cry1Ac crystals. In conclusion, the results suggest that 6-base intervening sequence was important for expression of cry1-type class gene. Furthermore, spacing effect of the intervening sequences may play an important role in expression of individual crystal proteins in B. thuringiensis without doubt.

In Vitro Selection of High Affinity DNA-Binding Protein Based on Plasmid Display Technology

  • Choi, Yoo-Seong;Joo, Hyun;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1022-1027
    • /
    • 2005
  • Based on plasmid display technology by the complexes of fusion protein and the encoding plasmid DNA, an in vitro selection method for high affinity DNA-binding protein was developed and experimentally demonstrated. The GAL4 DNA-binding domain (GAL4 DBD) was selected as a model DNA-binding protein, and enhanced green fluorescent protein (EGFP) was used as an expression reporter for the selection of target proteins. Error prone PCR was conducted to construct a mutant library of the model. Based on the affinity decrease with increased salt concentration, mutants of GAL4 DBD having high affinity were selected from the mutant protein library of protein-encoding plasmid complex by this method. Two mutants of (Lys33Glu, Arg123Lys, Ile127Lys) and (Ser47Pro, Ser85Pro) having high affinity were obtained from the first generation mutants. This method can be used for rapid in vitro selection of high affinity DNA-binding proteins, and has high potential for the screening of high affinity DNA-binding proteins in a sequence-specific manner.

Glucoamylase 분비신호서열의 돌연변이에 의한 효모에서 세균의 Endo-1,4-\beta-D-glucanase의 분비능 증진 (Improvement of Bacterial Endo-1,4-,\beta-D-glucanase(CMCase) Secretion in Yeast by Mutagenesis of Glucoamylase Signal Sequence.)

  • 이준원;강대욱;김보연;오원근;민태익;이상원;변유량;안종석
    • 한국미생물·생명공학회지
    • /
    • 제28권4호
    • /
    • pp.195-201
    • /
    • 2000
  • Glucoamylase of Saccharomyces diastaticus is produced as a large precursor composed of signal peptide (21 amino acid residues), Thr and Ser-rich region and functional glucoamylase. To evaluate the utility of the glucoamylase signal peptide (GSP) for the secretion of foreign proteins, four types of GSP mutants (ml : Pro-18 longrightarrowLeu-18, m2 : Tyr-13 longrightarrowLeu, m3 : Ser-9longrightarrowLeu-9, m4 : Asn-5 longrightarrowPro-5) were constructed and secretion efficiency of each mutant was compared with that of native GSP by the expression and secretion of Bacillus subtilis CMCase under the control of GAP in N-terminal domain and hydrophobic domain. n mutant 4, a polar amino acid was replaced by a helix - breaking Pro residue. CMCase activity assay and Western blot analysis revealed that CMCase secretion by GSP mutants replaced by Leu were increased compared with native GSP. In the case of m2 and m3, the substitution of Leu for Tyr-13 and Ser-9 in the hydrophobic region resulted in a twofold increase in the extracellular CMCase activity.

  • PDF

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

Sulfonylurea Herbicide Resistance Mechanism of Some Acetohydroxy Acid Synthase Mutants and New Designed Herbicides Specific to the Mutants

  • Choe, Mun Myong;Kang, Hun Chol;Kim, In Chul;Li, Hai Su;Wu, Ming Gen;Lee, Im Shik
    • Weed & Turfgrass Science
    • /
    • 제6권1호
    • /
    • pp.28-31
    • /
    • 2017
  • The mutation rate of proline in the position 197 (Pro197) in acetohydroxy acid synthase (AHAS) is highest among sulfonylurea (SU) herbicide-resistance mutants. Therefore, it is significant to investigate the resistance mechanism for the mutation and to develop the herbicides specific to the mutants. SU herbicide resistance mechanism of the mutants, 197Ser, 197Thr and 197Ala, in AHAS were targeted for designing new SU-herbicide. We did molecular dynamics (MD) simulation for understanding SU herbicide-resistance mechanisms of AHAS mutants and designed new herbicides with docking and MD evaluations. We have found that mutation to 197Ala and 197Ser enlarged the entrance of the active site, while 197Thr contracted. Map of the root mean square derivation (RMSD) and radius gyrations (Rg) revealed the domain indicating the conformations for herbicide resistant. Based on the enlarging-contracting mechanism of active site entrance, we designed new herbicides with substitution at the heterocyclic moiety of a SU herbicide for the complementary binding to the changed active site entrances of mutants, and designed new herbicides. We confirmed that our screened new herbicides bonded to both AHAS wild type and mutants with higher affinity, showing more stable binding conformation than the existing herbicides.