In Vitro Evolution of Lipase B from Candida antarctica Using Surface Display in Hansenula polymorpha

  • Kim, So-Young (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Sohn, Jung-Hoon (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Pyun, Yu-Ryang (Department of Biotechnology, Yonsei University) ;
  • Yang, In-Seok (Graduate School of Biotechnology, Korea University) ;
  • Kim, Kyung-Hyun (Graduate School of Biotechnology, Korea University) ;
  • Choi, Eui-Sung (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2007.08.30

Abstract

Lipase B from Candida antarctica (CalB) displayed on the cell surface of H. polymorpha has been functionally improved for catalytic activity by molecular evolution. CalB was displayed on the cell surface by fusing to a cell-wall anchor motif (CwpF). A library of CalB mutants was constructed by in vivo recombination in H. polymorpha. Several mutants with increased whole-cell CalB activity were acquired from screening seven thousand transformants. The two independent mutants CalB 10 and CalB 14 showed an approximately 5 times greater whole-cell activity than the wild-type. When these mutants were made as a soluble form, CalB 10 showed 6 times greater activity and CalB 14 showed an 11 times greater activity compared with the wild-type. Sequence analyses of mutant CALB genes revealed amino acid substitutions of $Leu^{278}Pro$ in CalB10 and $Leu^{278}Pro/Leu^{219}Gln$ in CalB14. The substituted $Pro^{278}$ in both mutants was located near the proline site of the ${\alpha}$10 helix. This mutation was assumed to induce a conformational change in the ${\alpha}$10 helix and increased the $k_{cat}$ value of mutant CalB approximately 6 times. Site-directed mutagenized CalB, LQ ($Leu^{219}Gln$) was secreted into the culture supernatant at an amount of approximately 3 times more without an increase in the CalB transcript level, compared with the wild-type.

Keywords

References

  1. Agaphonov, M. O., P. M. Trushkina, J. H. Sohn, E. S. Choi, S. K. Rhee, and M. D. Ter-Avanesyan. 1999. Vectors for rapid selection of integrants with different plasmid copy numbers in the yeast Hansenula polymorpha DL1. Yeast 15: 541-551 https://doi.org/10.1002/(SICI)1097-0061(199905)15:7<541::AID-YEA392>3.0.CO;2-G
  2. Anderson, E. M., K. M. Larsson, and O. Kirk. 1998. One biocatalyst many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatal. Biotransform. 16: 181-204 https://doi.org/10.3109/10242429809003198
  3. Farinas E. T., T. Bulter, and F. H. Arnold. 2001. Directed enzyme evolution. Curr. Opin. Biotechnol. 12: 545-551 https://doi.org/10.1016/S0958-1669(01)00261-0
  4. Gellissen, G. 2000. Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54: 741-750 https://doi.org/10.1007/s002530000464
  5. Gellissen, G., Z. A. Janowicz, A. Merckelbach, M. Piontek, P. Keup, U. Weydemann, C. P. Hollenberg, and A. W. Strasser. 1991. Heterologous gene expression in Hansenula polymorpha: Efficient secretion of glucoamylase. Biotechnology (NY) 9: 291-295 https://doi.org/10.1038/nbt0391-291
  6. Hoegh, I., S. Partkar, T. Halkier, and M. T. Hansen. 1995. Two lipases from Candida antarctica: Cloning and expression in Aspergillus oryzae. Can. J. Bot. 73: S869-S875 https://doi.org/10.1139/b95-333
  7. Hollenberg, C. P. and G. Gellissen. 1997. Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8: 554-560 https://doi.org/10.1016/S0958-1669(97)80028-6
  8. Holm, C., D. W. Meeks-Wagner, W. L. Fangman, and D. Botstein. 1986. A rapid, efficient method for isolating DNA from yeast. Gene 42: 169-173 https://doi.org/10.1016/0378-1119(86)90293-3
  9. Ivanovski, G. F., F. Gubensek, and J. Pungercar. 2002. mRNA secondary structure can greatly affect production of recombinant phospholipase A(2) toxins in bacteria. Toxicon 40: 543-549 https://doi.org/10.1016/S0041-0101(01)00250-1
  10. Kang, H. A., J. H. Sohn, E. S. Choi, B. H. Chung, M. H. Yu, and S. K. Rhee. 1998. Glycosylation of human alpha 1- antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts. Yeast 14: 371-381 https://doi.org/10.1002/(SICI)1097-0061(19980315)14:4<371::AID-YEA231>3.0.CO;2-1
  11. Kim, S. Y., J. H. Sohn, J. H. Bae, Y. R. Pyun, M. O. Agaphonov, M. D. Ter-Avanesyan, and E. S. Choi. 2003. Efficient library construction by in vivo recombination with a telomere-originated autonomously replicating sequence of Hansenula polymorpha. Appl. Environ. Microbiol. 69: 4448-4454 https://doi.org/10.1128/AEM.69.8.4448-4454.2003
  12. Kim, S. Y., J. H. Sohn, Y. R. Pyun, and E. S. Choi. 2002. A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast 19: 1153-1163 https://doi.org/10.1002/yea.911
  13. Magnusson, A. O., J. C. Rotticci-Mulder, A. Santagostino, and K. Hult. 2005. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chembiochem 6: 1051-1056 https://doi.org/10.1002/cbic.200400410
  14. Moon, M.-W., J.-K. Lee, T.-K. Oh, C.-S. Shin, and H.-K. Kim. 2006. Gene cloning of Streptomyces phospholipase D P821 suitable for synthesis of phosphatidylserine. J. Microbiol. Biotechnol. 16: 408-413
  15. Patkar, S., J. Vind, E. Kelstrup, M. W. Christensen, A. Svendsen, K. Borch, and O. Kirk. 1998. Effect of mutations in Candida antarctica B lipase. Chem. Phys. Lipids 93: 95- 101 https://doi.org/10.1016/S0009-3084(98)00032-2
  16. Qian, Z. and S. Lutz. 2005. Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J. Am. Chem. Soc. 127: 13466-13467 https://doi.org/10.1021/ja053932h
  17. Rotticci-Mulder, J. C., M. Gustavsson, M. Holmquist, K. Hult, and M. Martinelle. 2001. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expr. Purif. 21: 386-392 https://doi.org/10.1006/prep.2000.1387
  18. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratoty Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N
  19. Schmidt-Dannert, C. 1999. Recombinant microbial lipases for biotechnological applications. Bioorg. Med. Chem. 7: 2123-2130 https://doi.org/10.1016/S0968-0896(99)00141-8
  20. Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips, and F. M. Klis. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115-120 https://doi.org/10.1016/0167-7799(96)10017-2
  21. Sohn, J. H., E. S. Choi, H. A. Kang, J. S. Rhee, and S. K. Rhee. 1999. A family of telomere-associated autonomously replicating sequences and their functions in targeted recombination in Hansenula polymorpha DL-1. J. Bacteriol. 181: 1005-1013
  22. Suen, W. C., N. Zhang, L. Xiao, V. Madison, and A. Zaks. 2004. Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng. Des. Sel. 17: 133-140 https://doi.org/10.1093/protein/gzh017
  23. Uppenberg, J., M. T. Hansen, S. Patkar, and T. A. Jones. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2: 293-308 https://doi.org/10.1016/S0969-2126(00)00031-9
  24. Uppenberg, J., N. Ohrner, M. Norin, K. Hult, G. J. Kleywegt, S. Patkar, V. Waagen, T. Anthonsen, and T. A. Jones. 1995. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 34: 16838-16851 https://doi.org/10.1021/bi00051a035
  25. Veale, R. A., M. L. Giuseppin, H. M. van Eijk, P. E. Sudbery, and C. T. Verrips. 1992. Development of a strain of Hansenula polymorpha for the efficient expression of guar alpha-galactosidase. Yeast 8: 361-372 https://doi.org/10.1002/yea.320080504
  26. Washida, M., S. Takahashi, M. Ueda, and A. Tanaka. 2001. Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56: 681-686 https://doi.org/10.1007/s002530100718
  27. Wittrup, K. D. 2001. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12: 395-399 https://doi.org/10.1016/S0958-1669(00)00233-0
  28. Yoon, M. Y., P. K. Shin, Y. S. Han, S. H. Lee, J. K. Park, and C. S. Cheong. 2004. Isolation of an Acinetobacter junii SY- 01 strain producing an extracellular lipase enantioselectively hydrolyzing itaconazole precursor, and some properties of the lipase. J. Microbiol. Biotechnol. 14: 97-104
  29. Zhang, N., W. C. Suen, W. Windsor, L. Xiao, V. Madison, and A. Zaks. 2003. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng. 16: 599-605 https://doi.org/10.1093/protein/gzg074
  30. Zhao, H., K. Chockalingam, and Z. Chen. 2002. Directed evolution of enzymes and pathways for industrial biocatalysis. Curr. Opin. Biotechnol. 13: 104-110 https://doi.org/10.1016/S0958-1669(02)00291-4