DOI QR코드

DOI QR Code

Characterization of Aspergillus niger Mutants Deficient of a Protease

  • Chung, Hea-Jong (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Park, Seung-Moon (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Kim, Dae-Hyuk (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
  • Published : 2002.09.30

Abstract

Aspergillus niger has been used as a host to express many heterologous proteins. It has been known that the presence of an- abundant protease is a limiting factor to express a heterologous protein. The protease deficient mutant of A. niger was obtained using UV-irradiation. A total of $1{\times}10^5$ spores were irradiated with $10{\sim}20%$ survival dose of UV, 600 $J/m^2$ at 280 nm, and the resulting spores were screened on the casein-gelatin plates. Ten putative protease deficient mutants showing the reduced halo area around colonies were further analyzed to differentiate the protease deficient mutant from other mutant types. Among ten putative mutants, seven mutants showed significant growth defect on nutrient rich medium and two mutants appeared to be the secretory mutants, which resulted in the impaired secretion of extracellular proteins including proteases. A mutant $pro^--20$ showed reduced halo zone without any notable changes in growth rate. In addition, the starchdegrading and glucose oxidase activities in the culture filtrate of $pro^--20$ mutant showed the similar range as that of the parental strain, which suggested that the $pro^--20$ mutant ought to be the protease deficient mutant rather than a secretory mutant. The reduced proteolytic activity of the $pro^--20$ was demonstrated using SDS-fibrin zymography gel. The reduced extracellular proteolysis was quantified by casein degradation assay and, comparing with the parental strain, less than 30% residual extracellular protease activity was detected in the culture filtrate of the $pro^--20$ mutant. The bio-activity of an exogenously supplemented hGM-CSF(human Granulocyte-Macrophage Colony Stimulating Factor) in the culture filtrate of $pro^--20$ mutant was detected until eight times more diluted preparations than that of the parental strain.

Keywords

References

  1. Berka, R. M., Dunn-Coleman, N. S. and Ward, M. 1992. Industrial enzymes from Aspergillus species. Biotechnology 23: 155-202
  2. Berka, R. M., Ward, M., Wilson, L. J., Hayenga, K. J., Kodama, K. H., Carlomagno, L. P. and Thompson, S. A. 1990. Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene 86: 153-162 https://doi.org/10.1016/0378-1119(90)90274-U
  3. Bodie, E. A., Bower, B., Berka, R. M. and Dunn-Coleman, N. S. 1994. Economically important organic acid and enzyme products. Prog. Ind. Microbiol. 29: 561-602
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Choi, N. S., Yoon, K. S., Lee, J. Y., Han, K. Y. and Kim, S. H. 2001. Comparison of three substrates (casein, fibrin, and gelatin) in zymographic gel. J Biochem. Mol. Biol. 34: 531-536
  6. Carrez, D., Janssens, W., Degrave, P., Van den Hondel, C. A. M., Kinghorn, J. R., Fiers, W. and Contreras, R. 1990. Heterologous expression by filamentous fungi: secretion of human interleukin-6 by Aspergillus nidulans. Gene 94: 147-154 https://doi.org/10.1016/0378-1119(90)90381-Z
  7. Dunn-Coleman, N. S., Bloebaum, P., Berka, R. M., Bodie, E., Robinson, N., Armstrong, G., Ward, M., Przetak, M., Carter, G. L., LaCost, R., Wilson, L. J., Kodama, K. H., Baliu, E. E, Bower, B., Lamsa, M. and Heinsohn, H. 1991. Commercial levels of chymosin production by Aspergillus. Bio/Technology 9: 976-981 https://doi.org/10.1038/nbt1091-976
  8. Finkelstein, D. B. 1987. Improvement of enzyme production in Aspergillus. Antoine van Leeuwenhoek J. Microbial 53: 349-352 https://doi.org/10.1007/BF00400559
  9. Jarai, G. and Buxton, E. 1994. Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr. Genet. 26: 238-244 https://doi.org/10.1007/BF00309554
  10. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y. E., Miyazono, K., Urabe, A. and Takaku, E. 1989. Establishment and characterization of a unique human cell line that proliferates dependently on GMCSF, IL-3, or erythropoietin. J. Cell Physiol. 140: 323-334 https://doi.org/10.1002/jcp.1041400219
  11. Kim, M. J., Kwon, T. H., Jang, Y. S., Yang, M. S. and Kim, D. H. 2000. Expression of Murine GM-CSF from Recombinant Aspergillus niger. J. Microbiol. Biotechnol. 10: 287-292
  12. Kim, E. H., Lee, J. G., Whang, M. K., Park, H. M., Kim, J. Y., Chae, S. K. and Maeng, P. J. 2001. Controlled expression and secretion of Aspergillus oryzae alkaline protease in Aspergillus nidulans. J. Microbiol. 39: 95-101
  13. Lee, S. H., Lee, H. C., Kim, D. H., Yang, M. S. and Chung, B. W. 1998. Overproduction of sodium gluconate using the recombinant Aspergillus niger. Kor. J Biotechnol. Bioeng. 13: 214-219
  14. Lenouvel, E., Fraissinet-Tachet, L., van de Vondervoort, P. J. and Visser, J. 2001. Isolation of UV-induced mutations in the areA nitrogen regulatory gene of Aspergillus niger, and construction of a disruption mutant. Mol. Gen. Genet. 266: 42-47
  15. Luengo, J. M. and Penalva, M. A. 1994. Penicillin biosynthesis. Prog. Ind. Microbiol. 29: 603-638
  16. Mattern, I. E., Van Noort, J. M., Van den Berg, P, Archer, D. B., Roberts, I. N. and Van den Hondel, C. A M. 1992. Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol. Gen. Genet. 234: 332-336
  17. Park, E. H., Shin, Y. M., Lim, Y. Y., Kwon, T. H., Kim, D. H. and Yang, M. S. 2000. Expression of glucose oxidase by using recombinant yeast. J. Biotechnol. 81: 35-44 https://doi.org/10.1016/S0168-1656(00)00266-2
  18. Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. and Bufton, A. W. J. 1953. The genetics ofAspergillus nidulans. Adv. Genet. 5: 141-238
  19. Royer, J. C., Moyer, D. L., Reiwitch, S. G., Madden, M. S., Jensen, E. B., Brown, S. H., Yonker, C. C., Johnston, J. A, Golightly, E. J., Yoder, W. T. and Shuster, J. R. 1995. Fusarium graminearum A 3/5 as a novel host for heterologous protein production. Bio/Technology 13: 1479-1483 https://doi.org/10.1038/nbt1295-1479
  20. Sakaguchi, K., Takagi, M., Horiuchi, H. and Gomi, K. 1992. Fungal enzymes used in oriental food and beverage industries. Pp 54-99. In: Kinghorn, J. R. and Turner, G. Eds. Applied Molecular Genetics of Filamentous Fungi. Blackie Academic & Professional, N.Y, USA
  21. van den Hombergh, J. P T. W., van de Vondervoort, P. J. I., van der Heijden, N. C. B. A and Visser, J. 1995. New protease mutant in Aspergillus niger results in strongly reduced in vitro degradation of target proteins; genetical and biochemical characterization of seven complementation groups. Curr. Genet. 28: 299-308 https://doi.org/10.1007/BF00326427
  22. van den Hombergh, MacCabe, A. P., van de Vondervoort, P. J. I. and Visser, J. 1996. Regulation of acid phosphatases in an Aspergillus niger pacC disruption strain. Mol. Gen. Genet. 251: 542-550
  23. van den Hombergh, van de Vondervoort, P. J. I., Fraissinet-Tachet, L. and Visser, J. 1997. Aspergillus as a host for heterologous protein production: the problem of proteases. TlBTECH 115: 256-263