• Title/Summary/Keyword: Private Key Revocation

Search Result 15, Processing Time 0.023 seconds

Secure Private Key Revocation Scheme in Anonymous Cluster -Based MANETs

  • Park, YoHan;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.499-505
    • /
    • 2015
  • Security supports are a significant factor in the design of mobile ad hoc networks. In the dynamic topology where the node changes frequently, private key generation and revocation for newly joining and leaving nodes must be considered. In addition, the identities of individual nodes must be protected as well in mobile networks to avoid personal privacy concerns. This paper proposes ID-based private key revocation scheme and non-interactive key agreement scheme in anonymous MANETs. The proposed scheme provides the user privacy using pseudonyms and private key generation and revocation schemes with consideration of dynamic user changes. Therefore, our schemes can be applied in dynamic and privacy-preserving MANETs which are helpful to share multimedia data.

BDSS: Blockchain-based Data Sharing Scheme With Fine-grained Access Control And Permission Revocation In Medical Environment

  • Zhang, Lejun;Zou, Yanfei;Yousuf, Muhammad Hassam;Wang, Weizheng;Jin, Zilong;Su, Yansen;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1634-1652
    • /
    • 2022
  • Due to the increasing need for data sharing in the age of big data, how to achieve data access control and implement user permission revocation in the blockchain environment becomes an urgent problem. To solve the above problems, we propose a novel blockchain-based data sharing scheme (BDSS) with fine-grained access control and permission revocation in this paper, which regards the medical environment as the application scenario. In this scheme, we separate the public part and private part of the electronic medical record (EMR). Then, we use symmetric searchable encryption (SSE) technology to encrypt these two parts separately, and use attribute-based encryption (ABE) technology to encrypt symmetric keys which used in SSE technology separately. This guarantees better fine-grained access control and makes patients to share data at ease. In addition, we design a mechanism for EMR permission grant and revocation so that hospital can verify attribute set to determine whether to grant and revoke access permission through blockchain, so it is no longer necessary for ciphertext re-encryption and key update. Finally, security analysis, security proof and performance evaluation demonstrate that the proposed scheme is safe and effective in practical applications.

A Method for Detection of Private Key Compromise (서명용 개인키 노출 탐지 기법)

  • Park, Moon-Chan;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.781-793
    • /
    • 2014
  • A Public Key Infrastructure (PKI) is security standards to manage and use public key cryptosystem. A PKI is used to provide digital signature, authentication, public key encryption functionality on insecure channel, such as E-banking and E-commerce on Internet. A soft-token private key in PKI is leaked easily because it is stored in a file at standardized location. Also it is vulnerable to a brute-force password attack as is protected by password-based encryption. In this paper, we proposed a new method that detects private key compromise and is probabilistically secure against a brute-force password attack though soft-token private key is leaked. The main idea of the proposed method is to use a genuine signature key pair and (n-1) fake signature key pairs to make an attacker difficult to generate a valid signature with probability 1/n even if the attacker found the correct password. The proposed method provides detection and notification functionality when an attacker make an attempt at authentication, and enhances the security of soft-token private key without the additional cost of construction of infrastructure thereby extending the function of the existing PKI and SSL/TLS.

Accountable Authority Revocable Identity-Based Encryption (사용자 폐기를 지원하는 책임 기관 ID 기반 암호)

  • Choi, Suri;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1281-1293
    • /
    • 2017
  • In 2001, Boneh and Franklin proposed Identity-Based Encryption(IBE) that does not require a certificate like Public Key Infrastructure(PKI) by using user's Identity as a public key. However, IBE has a key escrow problem because the Private Key Generator(PKG), who is a trusted authority, generates a secret key of every user. Also, it does not support efficient revocation when the user's secret key is exposed or the system needs to revoke the user. Therefore, in order to use IBE as PKI that currently used, it is necessary to solve the key escrow problem and the revocation problem. In this paper, to solve those two problems, we suggest Accountable Authority Revocable IBE(A-RIBE) based on Accountable Authority IBE that mitigates the key escrow problem and Revocable IBE that solves the revocation problem. Also, we define the security model suitable foe A-RIBE, and analyze the principle of designing A-RIBE according to based A-IBE and RIBE and their advantage and disadvantage.

Secure Recovery Protocol of (1,3) Distributed Key Share with Trustless Setup for Asset Management in Blockchain (블록체인 기반 가상자산 관리를 위한 (1,3) 분산키의 비신뢰 기반 안전한 분산 복구 프로토콜)

  • Bae, Kyoungil;Park, Junhoo;Ryou, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.863-874
    • /
    • 2021
  • Distributed key generation (DKG) with trustless setup is a cryptographic protocol that distributes Shamir secret shares of a private key to participants while keeping the actual private key hidden to the participants. Also, by extending it to a threshold signature protocol, digital signatures can be generated without construction of private keys. This paper proposes a recovery protocol maintaining trustless setup assumptions, in particular to the useful (1,3) share structure. The proposed protocol meets same levels of security requirements with DKG in terms of correctness and secrecy. The protocol can also enable delegation and revocation of digital sign rights for blockchain-based asset management.

A New Efficient Private Key Reissuing Model for Identity-based Encryption Schemes Including Dynamic Information (동적 ID 정보가 포함된 신원기반 암호시스템에서 효율적인 키 재발급 모델)

  • Kim, Dong-Hyun;Kim, Sang-Jin;Koo, Bon-Seok;Ryu, Kwon-Ho;Oh, Hee-Kuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.23-36
    • /
    • 2005
  • The main obstacle hindering the wide deployment of identity-based cryptosystem is that the entity responsible for creating the private key has too much power. As a result, private keys are no longer private. One obvious solution to this problem is to apply the threshold technique. However, this increases the authentication computation, and communication cost during the key issuing phase. In this paper, we propose a new effi ient model for issuing multiple private keys in identity-based encryption schemes based on the Weil pairing that also alleviates the key escrow problem. In our system, the private key of a user is divided into two components, KGK (Key Description Key) and KUD(Key Usage Desscriptor), which are issued separately by different parties. The KGK is issued in a threshold manner by KIC (Key Issuing Center), whereas the KW is issued by a single authority called KUM (Key Usage Manager). Changing KW results in a different private key. As a result, a user can efficiently obtain a new private key by interacting with KUM. We can also adapt Gentry's time-slot based private key revocation approach to our scheme more efficiently than others. We also show the security of the system and its efficiency by analyzing the existing systems.

An Efficient Dynamic Group Signature with Non-frameability

  • Xie, Run;Xu, Chunxiang;He, Chanlian;Zhang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2407-2426
    • /
    • 2016
  • A group signature scheme allows any member to sign on behalf of a group. It is applied to practical distributed security communication environments, such as privacy-preserving, data mining. In particular, the excellent features of group signatures, including membership joining and revocation, anonymity, traceability, non-frameability and controllable linkability, make group signature scheme more attractive. Among these features, non-frameability can guarantee that a member's signature cannot be forged by any other (including issuer), and controllable linkability supports to confirm whether or not two group signatures are created by the same signer while preserving anonymity. Until now, only Hwang et al.'s group schemes (proposed in 2013 and 2015) can support all of these features. In this paper, we present a new dynamic group signature scheme which can achieve all of the above excellent features. Compared with their schemes, our scheme has the following advantages. Firstly, our scheme achieves more efficient membership revocation, signing and verifying. The cost of update key in our scheme is two-thirds of them. Secondly, the tracing algorithm is simpler, since the signer can be determined without the judging step. Furthermore, in our scheme, the size of group public key and member's private key are shorter. Lastly, we also prove security features of our scheme, such as anonymity, traceability, non-frameability, under a random oracle model.

Design of Online Certificate Revocation Information Transfer using Verifier Lists (검증자목록을 이용한 실시간 인증서 폐지 정보 전송의 설계)

  • 이용준;정재동;오해석
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.45-54
    • /
    • 2003
  • A public key certificate may be revoked before its validity period due to causes like the owner identification information change or the private key damage. Since a certificate has long valid time relatively, it is possible to become revoked during lifetime of certificate. The main technical issue in the public key infrastructure is how to handle the status of the certificate. We propose a simple mechanism for online certificate status validation that is suited to the financial network The characteristic of the proposed method is to broadcast certificate revocation information by using verifier list. The experimental results provide the same realtime as OCSP(Online Certificate Status Protocol). The proposed mechanism reduces the network load for certificate status validation in highly concentrated unbearable network.

Two Attribute-based Broadcast Encryption Algorithms based on the Binary Tree (이진트리 기반의 속성기반 암호전송 알고리즘)

  • Lee, Moon Sik;Kim, HongTae;Hong, Jeoung Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.358-363
    • /
    • 2014
  • In this paper, we present two constructions of the attribute-based broadcast encryption(ABBE) algorithm. Attribute-based encryption(ABE) algorithm enables an access control mechanism over encrypted data by specifying access policies among private keys and ciphertexts. ABBE algorithm can be used to construct ABE algorithm with revocation mechanism. Revocation has a useful property that revocation can be done without affecting any non-revoked uers. The main difference between our algorithm and the classical ones derived from the complete subtree paradigm which is apt for military hierarchy. Our algorithm improve the efficiency from the previously best ABBE algorithm, in particular, our algorithm allows one to select or revoke users by sending ciphertext of constant size with respect to the number of attributes and by storing logarithm secret key size of the number of users. Therefore, our algorithm can be an option to applications where computation cost is a top priority and can be applied to military technologies in the near future.

Mediated ID based signature scheme and key updating signature scheme (중재자를 이용한 ID기반 전자서명과 키 업데이팅 전자서명 기법)

  • Ju, Hak-Soo;Kim, Dae-Youb
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.463-470
    • /
    • 2007
  • Revocation is one of the main difficulties faced in implementing Public Key Infrastructures(PHs). Boneh, Ding and Tsudik first introduced a mediated cryptography for obtaining immediate revocation of RSA keys used in PKIs. Their method is based on the idea that each user's private key can be split into two random shares, one of which is given to the user and the other to an online security mediator(SEM). Thus any signature or decryption must be performed as a cooperation between a user and his/her associated SEM and revocation is achieved by instructing the mediator SEM to stop cooperating the user. Recently, Libert and Quisquater showed that the fast revocation method using a SEcurity Mediator(SEM) in a mRSA can be applied to the Boneh-Franklin identify based encryption and GDH signature schemes. In this paper we propose a mediated identity based signature(mIBS) with batch verification which apply the SEM architecture to an identity based signature. Libert's GDH siganture scheme is not forward secure even though forward security is an important and desirable feature for signature schemes. We propose an efficient key udating mediated signature scheme, mKUS based on mIBS and analyze its security and efficiency.