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Abstract 

 
A group signature scheme allows any member to sign on behalf of a group. It is applied to  
practical distributed security communication environments, such as privacy-preserving, 
data mining. In particular, the excellent features of group signatures, including 
membership joining and revocation, anonymity, traceability, non-frameability and 
controllable linkability, make group signature scheme more attractive. Among these 
features, non-frameability can guarantee that a member's signature cannot be forged by 
any other (including issuer), and controllable linkability supports to confirm whether or 
not two group signatures are created by the same signer while preserving anonymity. Until 
now, only Hwang et al.'s group schemes (proposed in 2013 and 2015) can support all of 
these features. In this paper, we present a new dynamic group signature scheme which can 
achieve all of the above excellent features. Compared with their schemes, our scheme has 
the following advantages. Firstly, our scheme achieves more efficient membership 
revocation, signing and verifying. The cost of update key in our scheme is two-thirds of 
them. Secondly, the tracing algorithm is simpler, since the signer can be determined 
without the judging step. Furthermore, in our scheme, the size of group public key and 
member's private key are shorter. Lastly, we also prove security features of our scheme, 
such as anonymity, traceability, non-frameability, under a random oracle model. 
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1. Introduction 

In traditional digital signature schemes, the identity of signer can be identified with the 
corresponding the public key. It is hard to protect identity privacy. 

In 1991, Chaum et al. introduced the concept of a group signature scheme [1]. A group 
signature scheme allows any member of a group to sign messages on behalf of a group while 
his identity is kept secret from the verifier. So a group signature scheme has the anonymity. 
Meanwhile, to prevent abuses, the group is controlled by a group manager that has the ability 
to open a group signature, i.e. to reveal the identity of the signature's originator (traceability). 
Furthermore, in 2005, Bellare, Shi and Zhang [2-3] extended these notions to dynamic 
groups and added the notion of non-frameability. In dynamic group scheme, it allows a new 
user to join group. The non-frameability can guarantee that any one (including the group 
manager) should not be able to produce a valid group signature on behalf of another member. 
Obviously, a dynamic group scheme is more flexible and efficient in practical application. In 
addition, Hwang et al. introduce the notion of the controllable linkability. The controllable 
linkability allows an entity who holds a linking key to determine whether two group 
signatures were created by the same signer or not without revealing its identity. These 
security features of group signature schemes make it attractive for various applications, such 
as, privacy-preserving, data mining, anonymous online communications and so on.  

With the different functionalities and levels of efficiency, a variety of group signature 
schemes have been presented in the last two decades [4-13]. However, very few schemes 
allows one to add members to the group and revoke membership with time, while they 
satisfy all security features, including anonymity, traceability, non-frameability. For example, 
Boneh et al. [14] presented a group signature system using bilinear maps. Their scheme not 
only provides the very short signature but also allows group manager to revoke members. 
However, their scheme requires the trusted party to generate the private key in the party 
performing setup. Since the trusted party knows the signing keys of all members, the 
non-frameability is not guaranteed. Furthermore, if the trusted party be removed after the 
setup, a new user can not be added to group. To resolve this issue, Delerable et al. proposed 
dynamic group signature scheme [15]. In this scheme, based on XDH assumptions, the 
non-frameability is achieved and the size of signature is shorter. However, using their open 
key, the opening algorithm is non-available when key update by revocation is considered. 
Obviously, this issue limits their scheme practical application. Others, such as, Benoit Libert 
et al. [18] presented scalable revocable group signature schemes. In these schemes, a new 
user can't be added to group and the size of signature is still quite big compared with short 
group signatures [14, 15]. 
  Very recently, Hwang [16, 17] proposed a short dynamic group signature scheme. Their 
scheme allows one to add members to the group and revoke membership, while it satisfy the 
anonymity, traceability and non-frameability. Furthermore, their scheme support a very 
useful functionality, namely the controllable linkability. The controllable linkability allows 
an entity who holds a linking key to determine whether two group signatures were created by 
the same signer or not without revealing its identity. Moreover, in their scheme, the signature 
length is very short. Therefore, their scheme is brilliant. However, in [16], the opening 
algorithm can't determine the signer's identity since issuer may provide more than one 
members with a “y”. Therefore, in their scheme, the judging is indispensable to determine 
the signer's identity. In addition, a limitation of their scheme is that the cost of update key is 
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expensive. Furthermore, the signature of upk should have been added to registry, otherwise 
the members of group may be framed by an issuer. 

Therefore, how to design more efficient and flexible group signature scheme supporting 
anonymity, traceability, non-frameability and controllable linkability is significance research 
work which has obtained more attention. 

1.1 Our Contributions 
Motivated by the issues discussed above, we present an new dynamic group signature 
scheme. It allows a new user to join the group and supports membership revocation. 
Compared with previous related works, our scheme has several advantages as follows. 

Firstly, our scheme can achieve many desirable features, such as user dynamic joining and 
revocation, anonymity, traceability, especially non-frameability and controllable linkability. 
To the best of our knowledge, only few schemes [16, 17] can achieve these features. 
Therefore, our scheme is more flexible solution in practical application. 

Secondly, our scheme is more effective. Compared with [16, 17], our scheme have lower 
cost of signing, verifying and updating-key. Particularly, in our scheme, to update his own 
key, an unrevoked member only needs to compute one multi-exponentiation with two bases 
while one multi-exponentiation with four bases in their scheme when one user is revoked. In 
addition, in our scheme, both the size of group public key and member's private key are 
shorter than that [16]. 

Lastly, in our scheme, the opening algorithm can determine the identity of signer without 
judging while preserving the non-frameability. In [16], the judging is indispensable, 
otherwise a member may be framed by the issuer. Therefore, our scheme is simpler to track 
the identity of signer. 

2. Preliminaries 

2.1 Dynamic Group Signature Schemes 
The model of dynamic group signature was introduced by Bellare et al. [3] (for short BSZ). 
We describe a slight variant of dynamic group signature in a form suitable for our paper, 
since our scheme can support membership revocation that is not a part of the BSZ model. 

Here, suppose there exists a fully trusted authority (example PKI) separated from the 
group environment. Both a user Ui and the group manager (GM) have obtained their 
certificate of keys from a fully trusted authority before setting up the system. Ui's certificate 
is denoted by (PKUID[i], SKUID[i]), and PKUID[i] stored in the registration table Reg. The GM 
certificate is denoted by (PKGID, SKGID). In addition, the group manager and users are 
involved in our dynamic group signature without the trusted party. Specifically, our dynamic 
group signature scheme (DGS) consists of a tuple polynomial-time algorithms DGS=( Gkg, 
Join, Gsig, Gvf, Open, Grev). There algorithms are defined as follows [3]: 
Gkg: Given security parameter n, it generates Gpk and Gmsk, where Gpk and Gmsk are the 
public key and the private key of GM, respectively. 
Join: By this algorithm, Ui can co-ordinating his private key Uski with GM. Finally, the 
group manager adds an Reg[i] corresponding to Ui to the registration table Reg. 
Gsig: Given a message M, it takes the Gpk and Ui's privacy key Uski and outputs a signature 
σ  on a message M.  
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Gvf: This algorithm takes the Gpk, message M and the signature σ  corresponding to M as 
input, output accept if the signature comes from a legitimate member of the group and reject 
otherwise. 
Open: This takes the valid signature σ , Gmsk and the Reg as input, and outputs the identity 
of σ 's signer. 
Grev: It takes the Gpk, a Reg[i] and Gmsk as input, and generates revocation list RL. 
Unrevoked members update their private keys with RL. So, a group membership can be 
selectively disabled without affecting the signing ability of unrevoked members. 

2.2 Notions of Correctness and Security 
According to the model of Bellare et al. in [3], a dynamic group signature scheme must 
satisfy the correctness and three security requirements: anonymity, traceability and 
non-frameability. Now, we show these definitions with slightly differences for suitable our 
scheme. In the following experiments, the   is polynomial-time adversary and all of 
oracles are specified in [3] (including AddU(.), CrptU(.), SndTol(.), SndToU(.), USK(.), 
RReg(.), WReg(.), GSig(.), Ch(.), Open(.)). Let HU be the lists of honest, CU be the lists of 
corrupted users, GSet be the set of message-signature pairs. 
1. Correctness To DGS, any  , and security parameter n, the correctness experiment 

( , )corExp n N  is as follows. 
(Gpk, Gmsk)←Gkg(n, N); HU φ← ; CU φ← ; (i, M)←  (Gpk: AddU(.), RReg(.));  
If i∉HU, return 0;  If Uski=ε , return 0; 

iσ ←Gsig(M, Gpk, Usk[i]); If Gvf( iσ , M, Gpk )=0, return 1; 
 j←Open(Gpk, Gmsk, Reg, M , iσ ) and j≠i, return 1; 
Let [ ( , ) 1]cor corAdv Pr Exp n N= =  , then we claim that the DGS is correct if cor

FdvA =0. 
2. Anonymity To any , security parameter n and b←{0,1}, the anonymity experiment 

( , )an bExp n N−
  is as follows. 

(Gpk, Gmsk)←Gkg(n, N); HU φ← ; CU φ← ; GSet φ← ; 
d←  ( Gpk, Gmsk(issue key): Chb(M*, i0, i1), SndToU(.), WReg(.), USK(.), CrptU(.)) 
Return d; 
Let an

FAdv =Pr[ ( ) 11 =− N,nExpan
F ] - Pr[ ( ) 10 =− N,nExpan

F ], then we claim that the DGS is 
CPA-anonymous if ( )⋅an

FAdv  is negligible function. 
3. Traceability To any  , and security parameter n, the traceability experiment ( , )trExp n N  
is as follows. 
(Gpk, Gmsk)←Gkg(n, N); HU φ← , CU φ← ;  
(M*, bσ )←  ( Gpk, Gmsk(open key): SndTol(.), AddU(.), RReg(.), USK(.), CrptU(.)); 
If Gvf( M*, *σ )=0, return 0; 
If Open(Gmsk, M*, *σ ) failed then return 1, else return 0; 
Let [ ( , ) 1]tr trAdv Pr Exp n N= =  , then we claim that the DGS is traceable if (.)trAdv  is 
negligible function. 
4. Non-frameability To any , and security parameter n, the non-frameability experiment 

( , )nfExp n N  is as follows. 
(Gpk, Gmsk, Usk)←Gkg(n, N); HU φ← , CU φ← ; 
(M, iσ )←  ( Gpk, Gmsk: SndToU(.), WReg(.),GSig(.) , CrptU(.),USK(.)); 
If Gvf(Gpk, M, iσ )=0, return 0; 
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If Open(Gpk, Gmsk, M, iσ )=i (i∈{1,…, N}) and  did not query Usk[i] or Gsig(i, M ) 
then return 1 else return 0. 
Let [ ( , ) 1]nf nfAdv Pr Exp n N= =  , then we claim that the DGS is non-frameability if (.)nfAdv  
is negligible function. 

2.2. Bilinear Map on Group 
Let G1, G2 , GT be multiplicative cyclic groups of prime order p. The groups are defined in 
certain families of nonsupersingular elliptic curves which are defined by Miyaji et al. in [19]. 
In G1, the size of the elements is 171-bit, and that discrete log on G1 has identical difficulty 
with discrete log in Zq where q is 1020 bits. Let 1 1g G∈  be generator, while 2 2g G∈  be 
generator. Let 2 1( )g gϕ = , where 2 1: G Gϕ →  is a computable isomorphism. 

Next, we review the notion of bilinear maps. Let e : 1 2 TG G G× →  be a map on G1, G2 , GT 
with three properties.  
(1) Bilinearity:∀ 1Gη ∈ , ∀ 2Gπ ∈  and a, b∈Z, ( , ) ( , )a b abe eη π η π= . 
(2) Non-degeneracy: 1 2( , ) 1

TGe g g ≠ . 
(3) Computability: for all 1Gη ∈ , 2Gπ ∈ , then a ( , )e η π  can be efficient computed. 
In the next content, we always suppose that (G1, G2) are a bilinear group pair as above. 

2.3. The Main Assumptions 
Let 1g , 2g , G1 , G2 be defined as above, where possibly G1=G2. Now, we review the q-SDH 
problem. Consider the following problem: The q-SDH problem [14] in (G1, G2) is that given 
(q+2)-tuple ( 1g , 2g , γ

2g , 2

2
γg ,…, q

g γ
2 ) , find a pair ( )1/( )

1 ,xg xγ+ , where x ∈ *
pZ . 

The q-SDH Assumption is defined as a difficult problem to be solved q-SDH problem.  
As a natural extension of q-SDH problem, we introduce the extended q-SDH problem and 

new complexity problem. Consider the following problems: 

The Extended q-SDH Problem (q-eSDH). Given tuple 2( ) ( )
1 2 2 2 2 2, , , , ,,( )q

g g g g g gγ γ γ β… , find 

a tuple 
1 , ,( )
y
xg x y

β
γ

+
+ , where *, px y Z∈  and kβ γ= ( 0,1k ≠ ).  

Formally, an algorithm   has advantage ε  in solving q-eSDH problem if  

2( ) ( )
1 2 2 2 2 2 1,, , , , , , , ,[ ( ) ( )]q

y
xPr k g g g g g g g x yβ

β
γ γ γ γ ε

+
+… = ≥  

where the probability is over the random choices of generator 2 2g G∈  (with ( ) 12 gg →ϕ ), of  
,γ β ∈ *

pZ  ( kβ γ= , 0,1k ≠ ) and of the random bits of  . 
Proof: Obviously, if an algorithm   can be used to solve q-eSDH problem, two q-eSDH 

tuples 
1 , ,( )
y
xg x y

β
γ

+
+  and 

1 , ,( )
y
xg x y

β
γ

′+
+ ′  can be obtained. According to the two tuples, we can 

compute: 1
1

( )
1 1 1/[( ) ( )]
y y

y yx x xg g g
β

γ
β
γ γ −

′+ +
′−+ + += . So   can obtain a q-SDH tuple 1/( )

1 ,( )xg xγ+ . 

Definition 1. The ( , , )q t ε -eSDH assumption holds in (G1, G2) states if no t -time algorithm 
has at least ε  advantage in solving the q-eSDH problem. 

New Complexity Problem (q-NC)  Take 1g , 2g , G1 , G2 as above, the q-NC problem is 
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defined as given tuple 2( ) ( )
1 2 2 2 2 1, , , , , , , ,( )q

y
xg g g g g x y g

β
γ γ γ γ

+
+… , compute 

1( )
y

xg γ+  or 
1( )xg
β
γ+ , 

where *, px y Z∈ .  

An algorithm   has ε  advantage in solving q -NC problem if  

2

1 2 2 2 2 1 1, , , , , , , ,[ ( ) ]q
y y
x xPr g g g g g x y g g

β
γ γ γ γ γ ε

+
+ +… = ≥  

where the probability is over the random choices of generator 2 2g G∈ , of *, pZγ β ∈ . 
Remark: 1. we emphasize  that γ  and β  are unknown to the algorithm  . 

2. According to q-SDH assumption, 
1

1
xg γ+  cannot be obtained from 

x , 1g , 2g , 2g γ , 2( )
2g γ ,…, ( )

2

q

g γ ,  so 
1

y
xg γ+  cannot be obtained by 

1

1( )yxg γ+ . So the q-NC 
assumption is reasonable model to consider. 

Definition 2. The ( , , )q t ε -NC assumption holds in (G1, G2) states if no t -time algorithm 
has at least ε  advantage in solving the q -NC problem. 

Lemma 1 If the q -NC assumption holds, given tuple 2

1 2 2 2 2 1, , , , , , , ,( )q
y
xg g g g g x y gγ γ γ

β
γ

+
+…  for 

any *( ) py y Z′ ≠ ∈ , it is difficult to compute 
1

y
xg γ

β′+
+ . 

Proof: Given the known condition, if an algorithm   is able to compute 
1

y
xg γ

β′+
+ for 

some *( ) py y Z′ ≠ ∈ , then we obtain 1
1 1 1( ) ( ) ( )
y y y y
x x xg g g

β β
γ γ γ

′ ′+ + −
−+ + +⋅ = . So, 1

1
( )

1 1( ) ( )
y y

y yx xg gγ γ−
′−

′−+ += . 

As a result,  
1( )

y
xg γ+  is calculated. 

The Decision Linear Diffie-Hellman Assumption (LA) [14] Let G1 be defined as above.  
Let η ,π ,τ ∈G1 be arbitrary generators of G1 and a, b, c pZ∈ , the LA holds is that given η , 
π , τ , aη , bπ , ∈cτ G1, it is difficult to decide whether a+b is equal to c.  More formally, 
based on the coin tosses, an algorithm    chooses uniformly random the parameters. Then, 
the advantage of probability of   in deciding a decision linear problem on G1 is 

21 AdvAdvdvA −= ，where Adv1=Pr[(η ,π ,τ aη , bπ ba+τ )=yes;η ,π ,τ ←G1，a, b←Zp] and 

Adv2=Pr[(η ,π ,τ aη , bπ , µ )=yes;η ,π , µ ←G1，a, b←Zp]. 

Definition 3. The ( , )t ε -LA holds if no t -time algorithm has at least ε  advantage in 
solving decision linear problem. 

Linear Encryption (LE)[14] Based on the LA, the LE scheme can be obtained. Specifically, 
take G1's generators η ,π ,τ  as the public key, then the corresponding private key is 

1λ , 2λ *
pZ∈ such that τπη λλ == 21 . If   wishes to send a message M∈G1 to  , then  

randomly selects 1ξ , 2ξ ∈Zp, computes 1ξη , 2ξπ , M 21 ξξτ +⋅ , and outputs the ciphertext (C1, C2, 
C3)=( 1ξη , 2ξπ , M 21 ξξτ +⋅ ) where η ,π ,τ  are  's public key. To decrypt the ciphertext,   
computes M = ( )21

213
λλ CCC ⋅  with his private key 1λ , 2λ . Similar to prove ElGamal's security, 

we can show that if the LA holds, LE is also against a chosen-plaintext attack. 
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3. A ZK Protocol For eSDH 
A zero-knowledge (ZK) protocol is a proof protocol with the following qualities. 
 The first, a verifier, after having been convinced the validity of what is proved, cannot have 
learned the knowledge possessed by the prover in order to conduct the proof; The second, 
after the protocol terminates, any other third party cannot see any meaningful thing which 
has taken place between the prover and the verifier. The ZK protocol is described as follows. 

Let (P, V) be ZK protocol, where P is a prover and V is a verifier. In the general process of 
interactive zero-knowledge proof, the P commits some values to the V. After the V received, 
a challenge value be sent to the P. The last, the V verifies the values responded by P to 
decide whether P possesses some knowledge.  

In group signature scheme, a verifier has been convinced the validity of signature without 
learning the identity of signer. Therefore, the process for verifying group signature is 
essentially a process of zero-knowledge proof. 

3.1 ZKP-eSDH 
In this section, based on q-eSDH problem, we construct a zero-knowledge protocol 
(ZKP-eSDH).  

Let P be a prover, and V be a verifier. In this protocol, P can prove that he possesses a 
solution to the q-eSDH problem to V. 
Setup: Generate the public values 1g ,η , π ,τ ∈G1 and 2g , 1ω , 2ω ∈G2. Here 2g  is a 
random generator of G2 such that ( ) 12 gg =ϕ , 1ω = γ

2g , 2ω = β
2g  for some γ , β ∈Zp. 

η ,π ,τ  are randomly selected in G1. A prover P possesses a tuple (R, x, y), where R= γ
β

+
+

x
y

g  

and x, y∈Zp such that e(R, xg21ω ) ⋅ e( 1g , yg −
2 )=e( 1g , 2ω ). 

P Commit: P chooses 1ξ , 2ξ  and ξr , xr , yr , 1δ
r , 2δ

r at random from Zp. Take (R, x, y) as 
input, P computes the following values:  

C1= 1ξη , C2= 2ξπ , C3=R 21 ξξτ +⋅ , D1= 1
1

δη rrxC − , D2= 2
2

δπ rrxC − ,  

D3= ( ) ( ) ( ) ( ) yx rrrrr g,geg,e,eg,Ce 212123
21 ⋅⋅⋅ −− δδξ τωτ  

P sends (C1, C2, C3, D1, D2, D3) to verifier V. 
V Challenge: V sends a challenge value c chosen uniformly at random from Z pZ . 

P Reply: P computes ( )21 ξξξξ += c-rv  , cxrv xx += , cy-rv yy = , 111
ξδδ cxrv += , 

222
ξδδ cxrv +=  and replies   with these values. 

V Verify: V computes the following five values:  D'1= 1
1

δη vvxC − , D'2= 2
2

δπ vvxC − , 
D'3= ( ) ( ) ( ) ( ) ( ) ( ) ccvvvvv ,ge,Ceg,geg,e,eg,Ce yx −−− ⋅⋅⋅⋅⋅ 2113212123

21 ωωτωτ δδξ . 
V accepts if Di=D'i holds (i=1,2,3).  

Next, we show that ZKP-eSDH has following features:  
 (1) If P is honest, then he can always be accepted by V (completeness); 
 (2) The prover's transcript can be simulated (zero-knowledge);  
(3) There exists an extractor for protocol.  

Feature 1. The ZKP-eSDH is complete. 
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Proof:  If V is honest, he can correctly recover Di=D'i (i=1,2,3) with the challenge value c 
and ξv , xv , yv , 1δ

v , 2δ
v . Specifically, V can computes the values: 

D'1= 1
1

δη vvxC − = 111 ξξξ δηη cxrcxrx1 −−+ = D1,  D'2= 2
2

δπ vvxC − = 222 ξξξ δππ cxrcxrx2 −−+ = D2 
In addition, he can also compute: 

D'3= ( ) ( ) ( ) ( ) ( ) ( ) ccvvvvv ,ge,Ceg,geg,e,eg,Ce yx −−− ⋅⋅⋅⋅⋅ 2113212123
21 ωωτωτ δδξ  

Because D3= ( ) ( ) ( ) ( ) yx rrrrr g,geg,e,eg,Ce 212123
21 ⋅⋅⋅ −− δδξ τωτ , and  

TG1 = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) cccycxccx ,ge,Ceg,geg,e,eg,Ce −−+−+− ⋅⋅⋅⋅⋅ 2113212123
2121 ωωτωτ ξξξξ  

So 3 3D D′ = , the completeness of ZKP-eSDH is proved. 

Feature 2.  If the LA holds and verifier V is honest , then the transcripts of ZKP-eSDH can 
be perfectly simulated. 

Proof:  Suppose, X is the distribution of the transcript output by the simulator. If the 
simulator succeeds, then the X is indistinguishable from the distribution of the transcript 
output by any actual prover under the LA on G1. 

Firstly, the simulator randomly selects R∈G1 and 1ξ , 2ξ ∈ *
pZ  and computes C1= 1ξη , 

C2= 2ξπ , C3=R 21 ξξτ +⋅ . In this simulation, to compute Di=D'i (i=1,2,3),  the simulator does not 
need to know R, x, y, 1ξ , 2ξ , so the pre-specified (C1, C2, C3) can also be used. By the 
method of simulation of proof transcript, when (C1, C2, C3) are the ciphertext LE of some  
R, the simulator can obtain simulation of the rest of proof transcript. After a challenge value 
c and ξv , xv , yv , 1δ

v , 2δ
v  are randomly selected from Zp, the simulator compute the values:  

D1= 1
1

δη vvxC − , D2= 2
2

δπ vvxC −  ,  
D3= ( ) ( ) ( ) ( ) ( ) ( ) ccvvvvv ,ge,Ceg,geg,e,eg,Ce yx −−− ⋅⋅⋅⋅⋅ 2113212123

21 ωωτωτ δδξ  
So, the simulator can output (C1, C2, C3, D1, D2, D3, ξv , xv , yv , 1δ

v , 2δ
v ). Obviously, these 

values satisfy verification equations and are indistinguishable with the proof transcripts of 
ZKP-eSDH on distribution if the LA holds. 
Feature 3. Extraction is feasible for ZKP-eSDH. 

Proof: Now we show that the extractor can obtain a tuple q-eSDH if   can be rewind in 
ZKP-eSDH above to the point before he receives a challenge c. At the beginning of the 
protocol, A sends (C1, C2, C3, D1, D2, D3) to  . Then, to challenge c,   replies with 
( ξv , xv , yv , 1δ

v , 2δ
v ). In this way, to challenge c c′ ≠ ,   replies with ( ξv′ , xv′ , yv′ , 1δ

v′ , 2δ
v′ ). If 

  is convincing, all verification equations Di (i=1, 2, 3) hold for each set of values. For 
convenience, denote ccc ′−=∆ , ξξξ∆ vvv ′−= , and similarly for ξ∆v , xv∆ , yv∆ , 1

vδ∆ , 2
vδ∆ .  

Let 
c
v
∆
∆

ξ ξ=′ , Since the values of D1 and D2 remain the same, the following equations are 

obtained: 1
1

δ∆∆ η vvxC = , 2
2

δ∆∆ π vvxC = .  Let 
c
vx x

∆
∆

=′ ,
c
v

y y

∆
∆

=′ , from D3 expression, we can 

deduce:  

( ) ( ) ( ) ( ) ( ) ( )1321212321
21

ωτωτω ∆
∆

∆
∆∆

∆
∆

∆
∆ δδξ

,Ceg,geg,e,eg,Ce,ge c
v

c
vv

c
v

c
v yx

⋅⋅⋅⋅=
+

−  

( ) ( ) ( )yx g,geg,Ce,ge ′′′− ⋅= 2121321 ωτω ξ  

(R, x′ , y′ )= 






 ′

c
v

,
c
vC yx-

∆
∆

∆
∆τ ξ，3  is a q-eSDH tuple. 
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Since (C1, C2, C3, D1, D2, D3) are equal to the challenge value c c′ ≠ . In fact, we already 
know: ξ∆∆∆ ξξ crv += , cxrv xx ∆∆∆ += , cyrv yy ∆∆∆ += . 
For the same Ci(i=1,2,3) and Di(i=1,2,3) in two running, it is easy to see that 0=ξ∆r , 

0=xr∆ , 0=yr∆ , then ξξ =′ , xx =′ , yy =′ . 
As a result, the R' in this q-eSDH tuple is identical to R in the LE (C1, C2, C3) . 
Putting the proof of three properties together, then the following theorem has been proved. 

Theorem The ZKP-eSDH is an honest-verifier zero-knowledge proof of knowledge of an 
eSDH tuple under the LA. 

4. Our Dynamic Group Signature Scheme from eSDH 

4.1 Our Signature Scheme from eSDH 
In this section, we propose a new dynamic group signature scheme. Roughly speaking, in our 
scheme, a signer who possess a valid q-eSDH tuple can generate a group signature which are 
the transcript of ZKP-eSDH protocol. Therefore, armed with theorem, we obtain from 
ZKP-eSDH protocol a regular signature scheme secure in the random oracle model by 
applying the Fiat-Shamir heuristic [20]. In our scheme, a hash function *:{0,1} pH Z→  be 
employed. Suppose further the LA assumption holds on G1, the q-eSDH assumption and the 
q-NC assumption hold on (G1, G2). Now we describe our group signature as follows. To 
simplify, our group signature scheme is denoted by eSDH-DGSS. 
Setup: Takes ϕ  and (G1, G2) as the section 2, let *:{0,1} pH Z→  is an ideal hash function, 
treated as a random oracle in the proof of security. 
Gkg: Randomly selected a generator 2g ∈G2, γ , β *

pZ←  ( kγβ = , secret k≠0,1), let 

1 2( )g gϕ= . GM selects private values 1λ , 2λ ← ∗
pZ  and computes γω 21 g= , βω 22 g= . Let 

{ }
1

11 G\G←τ , η , π ∈ G1, such that τπη λλ == 21 . This algorithm generates 
Gpk=( 1g , 2g ,η ,π ,τ , 1ω , 2ω ) and Gmsk=( γ , 1λ , 2λ , 0ζ ). Here 0ζ  is assumed initially to be 1. 
Join: Ui can be added to the group after running this algorithm between GM and Ui.  The 
GM add an item Reg[i] to the Reg. 
1. Selecting a secret value *

pi Zy ∈ , Ui computes iyg1  and sends iyg1  to GM. 

2. GM selects xi∈Zp and computes ( ) γω +′⋅ xyig
1

21
. He sends γ

β
+
+

x
y

g1
 to Ui, where ( )22 ωϕω =′ . 

3. Ui sends Si to GM, where Si is the signature of γ
β

+
+

x
y

g1
 with SKUID[i]. 

4. Using PKUID[i], GM verifies Si. If Si is a valid signature, then GM sends xi to Ui.  
As a result, Ui obtains his private key Uski=(Ri, xi, yi)=( γ

β
+
+

x
y

g1
, xi, yi). GM adds an Reg[i]=( Ri, 

iyg1 , xi, Si, PKUID[i]) which is corresponding to Ui to the registration table Reg. 

Gsig: Given message M, Ui chooses random 1ξ , 2ξ , ξr , xr , yr , 1δ
r , 2δ

r from Zp and     
computes the following values with his private key Uski=(Ri, xi, yi): C1= 1ξη , C2= 2ξπ , 
C3=Ri 21 ξξτ +⋅ , D1= 1

1
δη rrxC − , D2= 2

2
δπ rrxC − , D3= ( ) ( ) ( ) ( ) yx rrrrr g,geg,e,eg,Ce 212123

21 ⋅⋅⋅ −− δδξ τωτ , and 
the value of hash c=H(M, C1,C2, C3, D1, D2, D3). He also computes: 
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( )21 ξξξξ +−= crv , ixx cxrv += , iyy cyrv −= , 111
ξδδ icxrv += , 222

ξδδ icxrv += . 
At the end, Ui generates a group signature: σ =(C1, C2, C3, c, ξv , xv , yv , 1δ

v , 2δ
v ), and sends 

(σ , M) to the verifier. 
Gvf: Given Gpk and (σ , M), a verifier verify that σ  is a valid signature as follows:  
D'1= 1

1
δη vvxC − ,  D'2= 2

2
δπ vvxC −  ,  

D'3= ( ) ( ) ( ) ( ) ( ) ( ) ccvvvvv ,ge,Ceg,geg,e,eg,Ce yx −−− ⋅⋅⋅⋅⋅ 2113212123
21 ωωτωτ δδξ  

c'=H(M, C1,C2, C3, D'1, D'2, D'3)  
If c' =c accepts and reject otherwise. 
Open: To trace a signature's signer, GM takes the signature of M σ =(C1, C2, C3, 
c, ξv , xv , yv , 1δ

v , 2δ
v ), together with Gpk and Gmsk as input, and do the following: 

1. Verify the signature σ  is correct on M. 
2. Take elements (C1, C2, C3) of σ , and obtain someone Ri from Ri← ( )[ ] 1

021
213

-

CCC ζλλ ⋅ . 
GM finds the index i with respect to Ri in the registration table Reg. 
3. If the user index i is corresponding to Reg[i]=( Ri, iyg1 , xi, Si, PKUID[i]) in Reg and the 
validity of Si on Ri is validated by GM, then the algorithm claims that the group member with 
identity i produced σ . It provides a proof of this claim with GM which verifies the validity 
of signature Si on Ri with PKUID[i]. 

4.2 Revocation 
Now we give procedure that users can be revoked by the GM in the eSDH group signature 
above. Given Gpk=( 2121 ωωτπη ，，，，，，gg ), where γω 21 g= , βω 22 g= ∈ G2, 
γ , β ∈ *

pZ ,η ,π ,τ ∈G1. The private key of Ui is a tuple Uski=(Ri, xi, yi). 
Update Key  If GM have revoked users rj,,j 1  that are corresponding to their index. 
The revocation algorithm consists of three sub-algorithms, Update-Gmsk, Update-Gpk and 
Update-Usk which update a group public key and a user signature key, respectively. 
Update-Gmsk:  Updates Gmsk=( γ , 1λ , 2λ , 0ζ )→ ( γ , 1λ , 2λ , rζ ), where ∏

=











+
=

r

m j
r

m
x1

1
γ

ζ . 

Update-Gpk: Let initial Gpk=( 2121 ωωτπη ，，，，，，gg ). Using new Gmsk=( γ , 1λ , 2λ , rζ ), 
GM updates Gpk to Gpkr=( rrrrrrr gg 2121 ωωτπη ，，，，，， ), where rgg r

ζ
11 = , rgg r

ζ
22 = , 

ηη =r , ππ =r , ττ =r , γζωω rr gr
211 == , βζωω rr gr

222 == . 
  GM generate the revocation list RL that containing all revoked users (let in order of 
revoked). Specifically, RL is defined as (( 11g , R'j1, R''j1, xj1) , ... , ( rg1 , R'jr, R''jr, xjr)), Where 

kgg k
ζ
11 = , R'jk= ( )[ ] γζωϕ +

−

kj
k x

1

2）（ = γ
β
+kjx

kg1
, R''jr = γ

ζ
+kj

k
xg1

= γ+kjx

kg
1

1
. 

For (k=1,…,r)， GM publishes the RL and the new public key. The RL and the new public 
key are given to all signers and verifiers in the system 
Update-Usk:  Given tuple (Gpk, RL), Ui is able to obtain his new Usk corresponding to the 
new Gpkr locally if he has not been revoked. However, revoked users cannot do so. 

  Let Ui's private key Uski=(Ri, xi, yi)= 






 +
+

ii
x
y

r y,x,g i

i
γ
β

1 , Ui compute: 

Ri1= ( )

1
1

11

0

−−















′′⋅′

）（ ij

i

xx

y
jj

i

RR
R = ( ) ( ) ( ) ( ) ( ) 1

1

1

1
1

1

1
1

0

−−− −−−−− ′′′ jijiji xxy
j

xx
j

xx
i RRR  = ( ) γ

β
+
+

i

i
x
y

g11
 .  
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Let ( )∏
=

−−=
r

km
jik m

xx 1α modp, then Rir= ( )( )( )
∏
=

′′⋅′
r

k

-y
jji

k
k

i

kk
RRR

1

1
1

0

αα . Ui can compute his new private 

key Uski=(Rir, xi, yi)= ( ) 





 +

+

ii
x
y

r y,x,g i

i
γ
β

1 .  

  In fact, if a revoked user is able to update his private key, then he can execute update 
procedure as above. This means that revoked user's xj is not equal to 

mj
x  (m=1,…,r), 

contradicting { ; 1, , }
mj jx x m r∈ = … . 

Update-Open  When key update by revocation is considered, GM trace a signature's signer 
as follows.  Given updated signature rσ =(M, C1, C2, C3, c, ξv , xv , yv , 1δ

v , 2δ
v ), GM compute: 

Rir← ( )21
213
λλ CCC ⋅ , ( ) 1−

r

irR ζ =Ri. GM finds the index i with respect to Ri in the registration 
table Reg. Obviously, only GM can generate the correct rζ  and RL in the opening and the 
revocation mechanism above. So this revocation mechanism can overcome the problem [14] 
that someone can fool a verifier. 

4.3 Obtain Controllable Linkability 
The controllable linkability of group signatures enables an entity who has a linking key to 
find whether or not two group signatures were generated by the same signer, while 
preserving the anonymity. In our scheme, the controllable linkability can also be easy to 
achieve as follows. Let 1 2

1 2 2 2( , ) ( ) , ( )( )L L λ λω ω=  is linking key. Given two valid pairs of 
signatures and messages,  ( , )Mσ ′ ′  and ( , )Mσ ′′ ′′ , proceed as follows: 

( ) ( ) ( ) 1
22

1
11231

−− ′′′′′= L,CeL,Ce,CeT ω ， ( ) ( ) ( ) 1
22

1
11232

−− ′′′′= L,CeL,Ce,CeT ω   
If T1=T2 then output 1, otherwise output 0.  Obviously, anyone can verify whether or not 
two group signatures were generated by the same signer if he holds the linkability key. 

5. Our Scheme Security 
In this section, we proof the security of ours scheme. Here, we relax the full-anonymity 
requirement. While we follow a slightly weaker security model CPA-fully-Anonymity given 
in [14].  Given G1 and G2, we know that bilinear map evaluation, exponentiation and 
sampling are constant-time. To simplify the details of addition terms in size bound or time 
bounds, we use the big- O  notation in the next content. To prove the security of our scheme 
(eSDH-DGSS) as above, we also need to the forking lemma (see [21]). 

Theorem 5.1 Our scheme (eSDH-DGSS) is correct. 

Proof: Let Gpk=( 2121 ωωτπη ，，，，，，gg ) be the public key, and Uski=(Ri, xi, yi) be the 

user's private key. The β
γ

+
+

i

i
y
x

iR = 1g  is always true, so (Ri, xi, yi) is an q-eSDH tuple. According 

ZKP-eSDH protocol, a correct signature σ  is a part transcript of the ZKP-eSDH. One can 
easily show that a correct σ  will always pass validation of the verifier. Furthermore, (C1, 
C2, C3)=( 1ξη , 2ξπ , Ri 21 ξξτ +⋅ )  in signature σ  are a random LE of Ri with the public key 
(η ,π ,τ ), thus these values can always be restored by the GM holding the private key 
( 1λ , 2λ ). So each of the valid σ  which is output by an honest signer will be correctly 
opened. 
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Theorem 5.2 If the LE is ( , )t ε′ ′ -semantically secure on G1, our scheme (eSDH-DGSS) is 
( , , )Ht q ε -CPA-fully-anonymous, where (1)Ht t q O′= −  and ε ε ′= . Here Hq  is the number of 
hash function inquiries made by the adversary 

Proof: If an algorithm   can ( , , )Ht q ε -break the anonymity of eSDH-DGSS, we are able to 
construct an algorithm   in (1)Ht q O+ -time that can break the semantic security of LE 
with at least ε . Next, we give the procedure to construct the   as follows: 
  Assuming   possesses an LE public key ( , , )η π τ . Calling the Gkg,   can obtain the 

1g , 2g , 1ω , 2ω . Then   is equipped with the Gpk=( 1g , 2g ,η ,π ,τ , 1ω , 2ω ) generated by  , 
while a user is equipped with a Uski=(Ri, xi, yi). When the hash oracle H is asked by  ,   
reply with elements chosen uniformly at random from Zp, ensuring to reply identically when 
the same inquiry is occurs. 

Given a message M, i0 and i1,   accepts its fully-anonymity test. While   accepts its 
indistinguishability test by offering the LE of the two user's private keys 0i

R  and 1i
R . Now, 

suppose   is given an LE of bi
R  (C1, C2, C3), where the LE challenger chooses b  equal 

to 0 or 1. Using (C1, C2, C3) ,   generates from this LE a complete transcript (C1, C2, C3, 
D1, D2, D3, c, ξv , xv , yv , 1δ

v , 2δ
v ) with the simulator of feature.2. Because the tuple (C1, C2, C3) 

are the ciphertext (LE) of bi
R , the rest of this transcript is identical distribution with in a real 

ZKP-eSDH, where a prover's private R is bi
R . Obviously, given (C1, C2, C3), even though 

  does not know 1ξ , 2ξ , x and y, the simulator can generate a trace. 
  Then   patches H at (M, C1, C2, C3, D1, D2, D3) to equal c.   proclaims failure and 
exit if a collision occurred.  Otherwise, it returns a correct signature: σ ← (C1, C2, C3, 
c, ξv , xv , yv , 1δ

v , 2δ
v ) to  . In the light of the definition of H, we know that the probability of 

emerging a collision is negligible. 
Finally, a b' is output by .   replies its own challenge with the b'. Since the part (C1, 

C2, C3) of the group signature is obtained from a random LE of bi
R  of user ib,   replies 

its own challenge rightly whenever   does. 
As mentioned above, we know that the Gpk and the replies to  's inquiries are all correct 

and accurately distributed. So   succeeds in distinguishing the LE (C1, C2, C3) with 
identical advantage ε  if   can succeed to break the anonymity of the σ  with advantage 
ε .  

Suppose each hash query can be answered in constant time, and there are at most qH  's 
queries. Then  's running time exceeds  's by the amount it takes to answer  's queries.  
As result,   runs in time (1)Ht q O+ .  
CPA-Fully-traceability Follow the fully-traceability [3] security notion, there are two cases 
breaking fully-traceability. One case is the adversary provides a correct signature σ  such 
that the honest GM cannot trace the signer. The other case is the GM believes the origin of 
signature has been identified but he cannot provide a correct proof of its claim. 
Suppose, there is a list of tuple (Ri, xi, yi) for index i=1,..,n, where n is the number of the 
members of the group. For each i, either (Ri, xi, yi) is an eSDH tuple 
e(Ri, xg21ω ) ⋅ e( 1g , yg −

2 )=e( 1g , 2ω ), or else * *( , ) ?
i i

x y = , indicating that the * *( , )
i i

x y  
corresponding to Ri*  is not known. In accordance with the fully-traceability notion, then an 
algorithm   that breaks the full-traceability of the group signature scheme needs to 
complete the following work. It outputs a forged group signature σ  on a message M . 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016                     2419 

Then  is successful if σ  is trace to some R*∉ {R1,…, Rn} or R*= Ri* for i* with 
* *( , ) ?

i i
x y = .  

To prove the fully-traceability of eSDH-DGSS, the following theorem needs to be proved. 
With the same as above, the number of   inquiries signature oracle is denoted by qS, while 
the number of   inquiries hash oracle is denoted by qH. 

Theorem 5.3. If both q -NC and q -eSDH are ( , , )q t ε′ ′ -difficult on 1 2( , )G G , our 
scheme(eSDH-DGSS) is ( , , , , )H St q q n ε -fully-traceable, where 4 2 /Hn q n pε ε ′= + , (1)t t′= Θ  
and 1n q k= −  is the number of members of the group. 

Proof: Suppose   is the algorithm that can break the full-traceability of eSDH-DGSS. The 
algorithm   replies  's inquiries as oracle.   can obtain a eSDH solution if   can 
break the full-traceability. 

Firstly, we describe the follow preparatory work needs to be completed by  . 
Setup: Given groups (G1, G2) as above, a list of tuples (Ri, xi, yi) for index i=1,…,n, and 
generators 1g , 2g  such that 1g = ( )2gϕ . Also given γω 21 g= , βω 22 g=  ( kγβ = ),   picks 
a generator { }

1
11 G\G←τ  and values 1λ , 2λ ∈ ∗

pZ , then computes η , π ∈G1 such that 

1λη = 2λπ =τ . It generates the polynomial 
1 1

01

( ) ( )
n n

i
i i

ii

p z z x zρ
− −

==

= + =∑∏  with (Ri, xi, yi), where 

0ρ , 1ρ ,…, 1−nρ ∈ pZ  are the coefficients of the polynomial ( )p z . 

Given a eSDH instance 1 2 2 2 2, , , , ,( )q

g g g g gγ γ β…  on 1g , 2g ,   can compute 
1

2
0

( )i
i

n

i

g ργ
−

=
∏ . 

Let ( ) ( )
1

2 2 2
0

ii
n

p

i

g g g
ρ λγ

−

=

′ = =∏ , then ( ) ( ) ( )1
1

2 2 2
0

ii
n

p

i

g g g
ρ γγ λγ −

−

=

′= =∏ , ( ) ( ) ( ) ( )
1

2 2 2
0

i i k
n k

p

i

g g g
ρ ββ λγ −

+ −

=

′= =∏ . 

Moreover, if * *( , ) ?
i i

x y ≠ ,  then R'i= ( ) γ
β

+
+

′ i

i

x
y

g1
 can be obtained with (Ri, xi, yi).  Let 

( ) ( ) ( )
1 2

i
01,

z
n n

j
i j

jj j ii

p z
t z x t z

z x

− −

== ≠

= = + =
+ ∑∏ , where 0t , 1t ,…, 2−nt ∈ pZ  are the coefficient of the 

polynomial ( )zti . With 0t , 1t ,…, 2−nt ∈ pZ ,  we compute: 

( ) ( )
2 2

2 2
0

i
j j k

j j

y
n n kt t

j j k

g gγ γϕ ϕ
−

− + −

= =

   
⋅   

   
∏ ∏ = ( )( ) ( )( )1 1

k
i i it y tg gγ γ γ⋅ = ( )( )1

k
i

i

y
p xg

γ
γ γ

+
+ = R'i 

For the tuple (R'i, * *( , ) ?
i i

x y = ) at random index i* filled with Ri← G1 and ( ∗ix , ∗iy )← (∗ ,∗ ), 
where (∗ , ∗ ) are placeholder values. So,   obtains a list of distinct new (R'i, xi, yi). 
Secondly, we construct a framework for algorithm   interacting with   that wins the 
full-traceability game. Algorithm   sends ( ) ( )( )1 2g , , , , , ,g g gγ β η π τ′ ′ ′ ′  and the open key 

1λ , 2λ ∈ ∗
pZ  to algorithm  . In the process, algorithm   replies  's inquiries as random 

oracle. According to [3],  's attack capabilities are modeled by accessing the following 
oracles. 
Hash Queries: When   asks the hash of (M, C1, C2, C3, D1, D2, D3),   replies with a 
random element of pZ , ensuring to reply identically when the same query is occurred. 
Signature Queries: Algorithm   inquires a signature on message M at index i*.  

If * *( , ) ?
i i

x y = ,   randomly chooses 1ξ , 2ξ ∈ ∗
pZ  and Ri∈G1, let C1= 1ξη , C2= 2ξπ , 

 



2420                                        Xie et al.: An Efficient Dynamic Group Signature with Non-frameability 

C3=Ri 21 ξξτ +⋅ , and calls simulator with the values C1, C2, C3. The simulator returns a transcript 
ZKP-eSDH (C1, C2, C3, D1, D2, D3, c, ξv , xv , yv , 1δ

v , 2δ
v ) . Then   obtains a group 

signature σ =( C1, C2, C3, c, ξv , xv , yv , 1δ
v , 2δ

v ). In addition, it patches the H at (M, C1, C2, 
C3, D1, D2, D3) to equal c.  If   previously sets the oracle at this point to some other c′ , 
it declares failure and exits. Otherwise, it returns σ  to  .  

If * *( , ) ?
i i

x y ≠ ,   generates a signature σ  on M with key ( *iR′ , ∗ix , ∗iy ) by running 
the signing procedure, and returns σ  to  . 
Private Key Queries: Algorithm   asks for the private key of user at some i * *( , ) ?

i i
x y ≠ , 

  returns ( iR′ ,xi, yi) to  . Otherwise,   declares failure and exits. 
Output: At the end, when   succeeds, it outputs a forged signature σ =( C1, C2, C3, c, 
ξv , xv , yv , 1δ

v , 2δ
v ) on a message M.   open σ  with the key ( 1λ , 2λ ) and obtains someone 

R*∉{R'1,…, R'n} or R*= *iR′  and  ( ∗ix , ∗iy )=? at random index ∗i . 
1. If R*∉{R'1,…, R'n}, then the probability of breaking fully-traceability is the probability of 
successfully forged the group signature. 
2. If R*= *iR′  and  ( ∗ix , ∗iy )=?, at random index i* and   never queries the private key 
oracle at i*, but there exist a forged group signature that traces to *iR′  , then the probability 
of breaking fully-traceability is equals to nε , where ε  and n1  are the probability of 
successfully forged signature and the probability of i* selected , respectively.  

From  's view, the i* is independent. With qs << qH << p, we show the probability that 
  fails and  succeeds is negligible. In simulated signing queries, besides the message M, 
the hash oracle takes nine elements of bilinear group pair as input, so (qs+ qH) qs／p9 is the 
upper bound of the probability of collision. In fact, it is negligible. 
Now we show that how to obtain two related group signatures with the forking lemma [21]. 
Denote signature as ( M , 1σ , c, 2σ ), where 1σ =( C1, C2, C3, D1, D2, D3) and 2σ = 
( ξv , xv , yv , 1δ

v , 2δ
v ). c is derived from the random oracle H by inputting 1σ  and M . In the 

above process, let   be a forger (of either type) with probability ε ′ . 
Next, we show the procedure that   obtains another eSDH tuple with the results of  's 
success, and obtains contradicting the eSDH assumption. Apply the methodology of the 
forking lemma, we obtain the following procedure. 
The interaction between   and   is fully depicted by the random string θ  used by   

and  , and by the vector Γ  of replies made by the oracle of H. Let S be the collection of 
pairs (θ ; h ) that enable   succeed with forgery ( M , 1σ , c, 2σ ) by calling  . In the 
circumstances, let ind(θ ;Φ ) be the index of Γ  at which   inquiries (M, 1σ ). We define 

Pr[ ] (1/ )v S pε ′= = −  , where the 1/ p  is the probability that   guessed the hash of (M, 1σ ) 
without any help. As above, denote Sj (1≤ j≤ qH) be the collection of pairs (θ ; h ) such that 
ind( θ ; Γ )=j, denote J be the collection consisting of the most likely Index j such 
that J ={ [ ]jj Pr S S }≥ ( )1 2 Hq／ , then Pr[ind(θ ,Γ )|S]≥1 2／ . 

Let jΓ  denote the restriction of Γ  index strictly less than i. Since [ ]iPr S ≥ ( )Hqv 2 , 
there exist a subset jΩ  such that ∀ ( θ ; Γ )∈ jΩ , Γ ′rP [( θ , Γ ′ )∈ Sj, Γ ′ = Γ ]≥ ( )Hqv 4 , 
Pr[ jΓ |Sj] > 21 . it shows that [ : ]j jSj JPr Ω∃ ∈  ≥ 41  with a simple reasoning processes. 

If   replays  many times, with fixed θ  but randomly chosen Γ ′  such that 
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0j
Γ ′ = 0j

Γ . The   succeeds and obtains a forgery ( M , 1σ , c, 2σ ). It derives from jΩ  for 
some j∈J an execution (θ ;Φ ) such that Γ ′rP [(θ ; Γ ′ )∈Sj| 1

1
-j|Γ ′ = 1

1
-j|Γ ]≥ ( )Hqv 4 . 

When   and   are rewound to the jth inquiry, and go on with an oracle Γ ′  (Γ ′≠ Γ ) 
from the jth item, then   succeeded at a second forgery ( M , 1σ , c′ , 2σ ′ ) with ( M , 1σ ) still 
inquiries at  's j-th hash inquiry with probability at least ( )Hqv 4 . 

Thirdly, we know that there exists an extractor for two signatures. By using the extractor, 

  obtains a n-eSDH tuple ( -
3C ξτ ′ , x', y')=( *

iR′ , ix′ , iy′ )=( ( )1

i

i

y
xg

β
γ

+
+′ , ix′ , iy′ )  from  (M, 1σ , 

c, 2σ ). and (M, 1σ , c′ , 2σ ′ ). 
According to the Feature3, the *

iR′  is identical with the iR′  in the LE (C1, C2, C3) in 1σ . 
  proclaims success only when the extracted eSDH tuples ( *

iR′ , ix′ , iy′  ) is not amongst 
those that   created. 
Following by the technique of lemma [21], compute: 

( )p z = ( )zt ( )ixz ′+ + r  ,  ( ) ( )( )ip z z x′+ = ( )zt + ( )( )ixzr ′+ , ( )zt =∑
−

=

2

0

n

i

i
i zt  

Because ( ix′ , iy′ )≠(xi, yj) for all i , then ix′ ≠xi. Otherwise,   obtains new tuple 

1g , ,
i

i

y
x

i ix y
β
γ

′+
+

 
′  

 
 for some i. According to the lemma1 , this will lead to conflict with the q-NC.  

So r ≠0,   can compute: ( ) ( ) ( ) ( )

1
2 2

1 2 2
0

g
i

i ii i i k

ryn k ny t t
x

i i k

g g
β

γ γγ ϕ ϕ
−

′− + −′+ − −
+

= =

    ′ ⋅ ⋅         
∏ ∏ = ( )1

i

i

y
xg

β
γ

′+
′+ . 

Algorithm   obtains a new eSDH tuple 1 , ,
i

i

y
x

i ig x y
β
γ

′+
′+

 
′ ′  

 
, contradicting the eSDH 

assumption.  Putting all together, the following claim has been proved. 

There exists a   that solve an instance of n-eSDH with probability ( )2( )1/ 16 Hp qε − /  or 
( )2 1/ 16( / ) Hpn qε − /  in time (1)O t⋅  if the forger   successfully break the 

fully-traceable with probability ε . 

Next, we prove that our scheme can achieve the non-frameability.  

Theorem 5.4. If the discrete logarithm problem (DLP) is difficult on 1G , our scheme 
(eSDH-DGSS) is non-frameability. 

Proof: Suppose the error probability Open is negligible. We only consider that there exists 
an algorithm   that can break the non-frameability of eSDH-DGSS. Now we show how to 
construct an algorithm   that breaks the DLP on G1. 

Let (Ri, xi, yi) be the private key of user i. We show that   can solve the DLP on G1 if 
  can frame user i.   frames user i means that   can generate a signature which traces 
to Ri. 
Setup: Given private key (Ri, xi, yi) (j≠i, j=1,…,n) of members group, the private key of GM 
( γ , 1λ , 2λ ) and all user's Reg[j] (including Reg[j]),   responds  's queries as oracle.   
is given Gpk=( 1g , 2g ,η ,π ,τ , 1ω , 2ω ). We describe the interactive process between   and 
 . 
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Hash Queries:   inquires the hash of (M, C1, C2, C3, D1, D2, D3),   replies with an 
element random selected from Zp, ensuring to reply identically when the same inquiry is 
occurs. 
Signature Queries:  can query the signing oracle by at index j (j≠i). 
Private Key Queries:  queries for Uskj of the user at index j (j≠i). 
Reg Queries:  queries for the Reg[j] of the user at any index j in the registration table.   
forged σ =( C1, C2, C3, c, ξv , xv , yv , 1δ

v , 2δ
v ) that traces to Ri is output with probability ε  

when   succeeds. Replay this process, on the basis of the forking lemma,   can obtain 
σ ′ =( C1, C2, C3, c′ , ξv′ , xv′ , yv′ , 1δ

v′ , 2δ
v′ ) with probability 2 / (16 )Hqε , where qH is the number 

of hash queries made by  . Moreover, using the extractor, one can find the whole private 
key of user i (Ri, xi, yi). With yj be obtained and iyg1  contained Reg[j], so DLP on G1 be 
successfully solved by  . 

6. Performance Analysis 
Next, we analyze the performance of our scheme in terms of features, keys size and 
computation overhead. This analysis includes a comparison between a few best-known group 
signature schemes [15-18].  

6.1 Performance Analysis 

With the families of curves described in [19], the size of elements of G1 is l =171-bit, the size 
of c is 80-bit and the order bit-length of G1 is taken as a lG =170-bit prime, as a result the 
total length of the signature is 1443-bit. When given parameters as above, we obtain the 
security is identical with a level 1024-bit RSA signature. We also assume that the 
non-frameability, adding a member in group, controllable linkability, the size of group public 
key, the size of user's key and the signature size are denoted by NF, ADD, CL, GPKS, 
USKS, SS, respectively. The comparison results of features, keys size (for Gpk, Usk) and 
signature length are summarized in the following table.1.  

From the Table 1, it shows that [16, 17] and our scheme have the all desirable features 
(including dynamic joining and revocation, anonymity, traceability, non-frameability and 
controllable linkability). However, compared with [16,17], the Gpk and Usk size are shorter 
in our scheme. 

Table 1. A Comparison of Some Group Signature Schemes 
Schemes NF OPENR CL ADD GPKS USKS SS 

LPY[18] YES YES N/A N/A O(logN) O(n) O(logN) 

BBS[14] N/A N/A N/A N/A 1020 341 1443 

DP[15] YES N/A N/A YES 1020 511 1444 

HL[17] YES YES YES YES 2052 852 2044 

HL [16] YES YES YES YES 1368 681 1363 

Ours YES YES YES YES 1191 511 1443 

 
Furthermore, in our scheme, the computation costs for signing, verifying, opening, 

key-updating are as follows. 
Signing: Since ( )23 g,Ce = ( ) ( )22

21 g,Reg,e ⋅+ξξτ , by caching 2( , )e gτ  and ( )2g,Re , signing 
does not need the pairing operation. Furthermore, C1= 1ξη  and D1= 11 δξη rrx− can be computed 
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by one exponentiation { }111 δξξη rr,max x−  (similarly, C2 and D2 can be computed), signing only 
need three exponentiations in G1, one multi-exponentiation with four bases in GT. For 
multi-exponentiation, all bases are fixed in signing, further speedup by precomputation is 
possible. 
Verifying: A verifier can obtain ( ) ( )cv ,Ceg,Ce x

1323 ω by computing ( )cv
2

xg,Ce 13 ω . Therefore, 
verifying requires two multi-exponentiations with two bases in G1, one 
multi-exponentiations with two bases in G2, one multi-exponentiation with four bases in GT 
and one pairing operation. 
Opening: Since Ri= ( ) 1−

r

irR ζ = ( ) 321
1

2
1

1 CCC rr ⋅⋅
−− −− ζλζλ , opening requires one multi-exponentiation 

with two bases in G1.  
Key-updating: All unrevoked users must update their private keys when a new revocation 
occurs. When one user revoked, this updating requires one multi-exponentiation with two 
bases in G1. 

The computation cost of signing, verifying, and user's key-updating are denoted by SC, 
VC and UC, respectively. In additional, let TEw,h denotes simultaneous multi-exponentiation 
using w elements of group Gh, where h=1, 2, T. Let P denotes simultaneous pairing operation. 
The comparison results of computation costs for signing, verifying, updating-key are 
summarized in the following Table 2.  

 
Table 2. A Comparison of Some Group Signature Schemes 

Schemes SC VC UC(one user 
revoked) 

BBS[14] 3TE1,1 + TE4,T 4TE2,1+ TE2,1+ TE4,T +P TE2,1 

DP[15] 3TE1,1 + TE4,T 2TE2,1+TE3,1+ TE2,2+TE4,T +P TE2,1 

HL[17] 2TE1,1+3 TE3,1+ TE8,T 4TE2,1+ TE4,1+ TE2,2+ TE7,T+P TE3,1 

HL [16] 3TE1,1+ TE2,1+ TE4,T TE2,1+ TE3,1+ TE2,2+ TE4,T+P TE3,1 

Ours 3TE1,1 + TE4,T 2TE2,1+ TE2,2+ TE4,T+P TE2,1 

 
In Table 2, it shows that our scheme has lower computation costs for signing, verifying, 

updating-key. Therefore, our scheme is more efficient. Particularly, comparing with [16] 
which use expensive pairing operations (in judging process) to determine a signer's identity, 
our scheme is more attractive because we don't need pairing operation.  

6.2 Experimental Results 

The test for these results was performed on an Pentium Dual-Core CPU E5400 clocked at 
2.70GHz and RAM 1.96GB. This test makes use of three D-type curves from the PBC 
library [22] running on top of Gnu GMP on Windows XP.  
 

Table 3. Experimental Results (time:ms) 
Schemes D174 D201 D224 

SC 63.648 81.449 98.781 

VC 147.386 188.807 229.112 
UC 3.770 4.845 6.259 

Open 6.670 8.572 11.074 
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Every test result is the average of 1,000 tests. In Table 3, we show the running time of 
signing, verifying, user’s key-updating (with 1 revoked user), opening. According to [23], 
further speedup is possible, when this test was performed on A-type curves.  

For the sake of space, we only show the parameters for D174 Curve in Table 4. 

 
Table 4. The D174 Curve with the embedding degree k = 6 

q 15028799613985034465755506450771565229282832217860390155996483840017 

n 15028799613985034465755506450771561352583254744125520639296541195021 

h 1 

r 15028799613985034465755506450771561352583254744125520639296541195021 

a 1871224163624666631860092489128939059944978347142292177323825642096 

b 9795501723343380547144152006776653149306466138012730640114125605701 

k 6 

nk 

11522474695025217370062603013790980334538096429455689114222024912184432319228393204650383661781864806076247259
55637835054166999434487843013620271494576148838589061992555345766815850420278658055997094593665763685534671359
88880675162146348593305546345057671984158571504793459447217103562740477075361562962155734127637351356009538654
19000398920292535215757291539307525639675204597938919504807427238735811520 

hk 

51014915936684265604900487195256160848193571244274648855332475661658304506316301006112887177277345010864012988
12782965544925642487102450036859798946237381306218927415091655268926285260325401124850235604120654426275548177
9137398040376281542938513970473990787064615734720 

coeff0 11975189258259697166257037825227536931446707944682470951111859446192 
coeff1 13433042200347934827742738095249546804006687562088254057411901362771 
coeff2 8327464521117791238079105175448122006759863625508043495770887411614 

nqr 142721363302176037340346936780070353538541593770301992936740616924 

7. Conclusion 
In this paper we proposed dynamic group signature. In our scheme, the non-frameability 

is guaranteed without the trusted party. Compared with the contemporary counterparts, our 
scheme more efficient and flexible group signature scheme which support the 
non-frameability. Furthermore, our scheme can also easily achieve the controllable linking 
which introduced by Hwang et. al. In addition, our scheme has provided algorithm structure 
such that the opening algorithm is available when key update by revocation is considered 
without incurring other secure threats. Lastly, the group manager flexibility allows one 
member to add to the group and revoke membership with time in our scheme. However, in 
[14], the adding member can't be achieved. 
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