International Journal of Computer Science & Network Security
/
제21권6호
/
pp.137-142
/
2021
Machine-learning systems have proven their worth in various industries, including healthcare and banking, by assisting in the extraction of valuable inferences. Information in these crucial sectors is traditionally stored in databases distributed across multiple environments, making accessing and extracting data from them a tough job. To this issue, we must add that these data sources contain sensitive information, implying that the data cannot be shared outside of the head. Using cryptographic techniques, Privacy-Preserving Machine Learning (PPML) helps solve this challenge, enabling information discovery while maintaining data privacy. In this paper, we talk about how to keep your data mining private. Because Data mining has a wide variety of uses, including business intelligence, medical diagnostic systems, image processing, web search, and scientific discoveries, and we discuss privacy-preserving in deep learning because deep learning (DL) exhibits exceptional exactitude in picture detection, Speech recognition, and natural language processing recognition as when compared to other fields of machine learning so that it detects the existence of any error that may occur to the data or access to systems and add data by unauthorized persons.
인공지능 기술은 스마트 시티, 자율 주행, 의료 분야 등 다양한 분야에서 활용 가능성을 높이 평가받고 있으나, 정보주체의 개인정보 및 민감정보의 노출 문제로 모델 활용이 제한되고 있다. 이에 따라 데이터를 중앙 서버에 모아서 학습하지 않고, 보유 데이터셋을 바탕으로 일차적으로 학습을 진행한 후 글로벌 모델을 최종적으로 학습하는 분산 기계 학습의 개념이 등장하였다. 그러나, 분산 기계 학습은 여전히 협력하여 학습을 진행하는 과정에서 데이터 프라이버시 위협이 발생한다. 본 연구는 분산 기계 학습 연구 분야에서 프라이버시를 보호하기 위한 연구를 서버의 존재 유무, 학습 데이터셋의 분포 환경, 참여자의 성능 차이 등 현재까지 제안된 분류 기준들을 바탕으로 유기적으로 분석하여 최신 연구 동향을 파악한다. 특히, 대표적인 분산 기계 학습 기법인 수평적 연합학습, 수직적 연합학습, 스웜 학습에 집중하여 활용된 프라이버시 보호 기법을 살펴본 후 향후 진행되어야 할 연구 방향을 모색한다.
Abdul Raheem;Zhen Yang;Haiyang Yu;Muhammad Yaqub;Fahad Sabah;Shahzad Ahmed;Malik Abdul Manan;Imran Shabir Chuhan
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권9호
/
pp.2589-2604
/
2024
Brain tumors, characterized by uncontrollable cellular growths, are a significant global health challenge. Navigating the complexities of tumor identification due to their varied dimensions and positions, our research introduces enhanced methods for precise detection. Utilizing advanced learning techniques, we've improved early identification by preprocessing clinical dataset-derived images, augmenting them via a Generative Adversarial Network, and applying an Improved Privacy-Preserving Collaborative Convolutional Neural Network (IPC-CNN) for segmentation. Recognizing the critical importance of data security in today's digital era, our framework emphasizes the preservation of patient privacy. We evaluated the performance of our proposed model on the Figshare and BRATS 2018 datasets. By facilitating a collaborative model training environment across multiple healthcare institutions, we harness the power of distributed computing to securely aggregate model updates, ensuring individual data protection while leveraging collective expertise. Our IPC-CNN model achieved an accuracy of 99.40%, marking a notable advancement in brain tumor classification and offering invaluable insights for both the medical imaging and machine learning communities.
기계 학습은 다양한 현상의 예측 및 분석 등을 가장 정확하게 수행하는 기술 중 하나이다. K-평균 클러스터링은 주어진 데이터들을 비슷한 데이터들의 군집으로 분류하는 기계 학습 기법의 한 종류로 다양한 분야에서 사용된다. K-평균 클러스터링의 성능을 높이기 위해서는 가능하면 많은 데이터에 기반한 분석을 수행하는 것이 바람직하므로, K-평균 클러스터링은 데이터를 제공하는 다수의 클라이언트들과 제공받은 데이터들을 사용하여 클러스터의 중심값을 계산하는 서버가 있는 모델에서 수행될 수 있다. 그러나 이 모델은 클라이언트들의 데이터가 민감한 정보를 포함하고 있는 경우, 서버가 클라이언트들의 프라이버시를 침해할 수 있다는 문제점이 있다. 본 논문에서는 다수의 클라이언트가 있는 모델에서 이러한 문제를 해결하기 위해 동형 암호를 사용하여 클라이언트의 프라이버시를 보호하며 기계 학습을 수행할 수 있는 프라이버시 보장형 K-평균 클러스터링 방법을 제안한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권6호
/
pp.1462-1477
/
2024
With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.
본 연구에서는 민감 정보가 포함된 경우의 서포트 벡터 머신 (SVM) 학습 알고리즘을 제안한다. 기계 학습 모형들이 실세계의 자동화된 의사 결정을 가능하게 하였지만 규제들은 프라이버시 보호를 위해서 민감 정보들의 활용을 제한하고 있다. 특히 인종, 성별, 장애 여부와 같은 법적으로 보호되는 정보들의 프라이버시 보호는 필수이다. 본 연구에서는 완전 동형암호를 활용하여 부분적인 민감 정보가 포함된 경우에 최소 제곱 SVM (LSSVM) 모형을 효율적으로 학습할 수 있는 방법을 제안한다. 본 프레임워크에서는 데이터 소유주가 민감하지 않은 정보와 민감한 정보 모두를 가지고 있고, 이를 기계학습 서비스 제공자에게 제공할 때에 민감 정보만 암호화해서 제공하는 것을 가정한다. 결과적으로 데이터 소유자는 민감 정보를 노출시키지 않으면서도 암호화된 상태로 모형의 학습 정보를 얻을 수 있다. 모형을 실제 활용할 경우에는 모든 정보를 암호화하여 안전하게 예측 결과를 제공할 수 있도록 한다. 실제 데이터에 대한 실험을 통해 본 알고리즘이 동형암호로 구현될 경우에 원래의 LSSVM 모형과 비슷한 성능을 가질 수 있음을 확인해 볼 수 있었다. 또한, 개선된 효율적인 알고리즘에 대한 실험은 적은 성능 저하로 큰 연산 효율성을 달성할 가능성을 입증하였다.
AI (Artificial Intelligence) is being utilized in various fields and services to give convenience to human life. Unfortunately, there are many security vulnerabilities in today's ML (Machine Learning) systems, causing various privacy concerns as some AI models need individuals' private data to train them. Such concerns lead to the interest in ML systems which can preserve the privacy of individuals' data. This paper introduces the latest research on various attacks that infringe data privacy and the corresponding defense techniques.
딥러닝과 같은 기계학습 기술은 최근에 광범위하게 활용되고 있다. 이러한 딥러닝은 최근 낮은 컴퓨팅 성능을 가지는 임베디드 기기 및 엣지 디바이스에서 보안성 향상을 위해 ARM TrustZone과 같은 신뢰 수행 환경에서 수행되는데, 이와 같은 실행 환경에서는 제한된 컴퓨팅 자원으로 인해 정상적인 수행에 방해를 받는다. 이를 극복하기 위해 DNN 모델 partitioning을 통해 TEE의 제한된 memory를 효율적으로 사용하며 DNN 모델을 보호하는 TPMP를 제안한다. TPMP는 최적화된 memory 스케줄링을 통해 기존의 memory 스케줄링 방법으로 수행할 수 없었던 모델들을 TEE 내에서 수행하여 시스템 자원 소모를 거의 증가시키지 않으면서 DNN의 높은 기밀성을 달성한다.
본 연구에서는 동형 암호를 활용한 프라이버시 보장 암호화 API 오용 탐지 프레임워크를 제안한다. 제안하는 프레임워크는 암호화된 상태에서 데이터의 기밀성을 유지하면서도 효과적으로 암호화 API 오용을 탐지할 수 있도록 설계되었다. 먼저, CNN(Convolutional Neural Network) 기반의 탐지 모델을 사용하고, 암호화된 환경에서도 높은 정확도를 유지하기 위해 모델 구조를 최적화하였다. 구체적으로, 효율적인 동형 암호 연산을 위해 깊이별 합성곱층을 활용하고, 비선형성을 확보하기 위해 세제곱 활성화 함수를 도입하여 암호화된 데이터에서도 오용 탐지를 효과적으로 수행할 수 있도록 하였다. 실험 결과, 제안된 모델은 F1 스코어 0.978의 높은 탐지 성능을 보였으며, 동형 암호를 적용한 모델의 전체 실행 시간은 11.20초로, 실시간 처리에 가까운 계산 효율성을 보여주었다. 이러한 결과는 동형 암호를 활용한 환경에서도 우수한 보안성과 정확도를 제공할 수 있음을 확인시켜준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권4호
/
pp.826-842
/
2024
As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.