• Title/Summary/Keyword: Priority-based control

Search Result 439, Processing Time 0.035 seconds

User Request Filtering Algorithm for QoS based on Class priority (등급 기반의 QoS 보장을 위한 서비스 요청 필터링 알고리즘)

  • Park, Hea-Sook;Baik, Doo-Kwon
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.487-492
    • /
    • 2003
  • To satisfy the requirements for QoS of Users using multimedia content stream service, it is required to control mechanism for QoS based on class priority, URFA classifies the user by two classes (super class, base class) and controls the admission ratio of user's requests by user's class information. URFA increases the admission ratio class and utilization ratio of stream server resources.

Distributed memory access architecture and control for fully disaggregated datacenter network

  • Kyeong-Eun Han;Ji Wook Youn;Jongtae Song;Dae-Ub Kim;Joon Ki Lee
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1020-1033
    • /
    • 2022
  • In this paper, we propose novel disaggregated memory module (dMM) architecture and memory access control schemes to solve the collision and contention problems of memory disaggregation, reducing the average memory access time to less than 1 ㎲. In the schemes, the distributed scheduler in each dMM determines the order of memory read/write access based on delay-sensitive priority requests in the disaggregated memory access frame (dMAF). We used the memory-intensive first (MIF) algorithm and priority-based MIF (p-MIF) algorithm that prioritize delay-sensitive and/or memory-intensive (MI) traffic over CPU-intensive (CI) traffic. We evaluated the performance of the proposed schemes through simulation using OPNET and hardware implementation. Our results showed that when the offered load was below 0.7 and the payload of dMAF was 256 bytes, the average round trip time (RTT) was the lowest, ~0.676 ㎲. The dMM scheduling algorithms, MIF and p-MIF, achieved delay less than 1 ㎲ for all MI traffic with less than 10% of transmission overhead.

SDN-COR: An Efficient Network Coding Opportunistic Routing Method for Software-Defined Wireless Sensor Networks

  • Yifan Hu;Xiqiang Hou;Fuqiang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1795-1816
    • /
    • 2024
  • A Software-Defined Wireless Sensor Networks (SDWSNs) architecture is firstly proposed to address the issues of inflexible architecture strategies and low scalability of traditional WSNs in this article. The SDWSNs architecture involves the design of a software-defined sensor network model and a customized controller architecture, along with an analysis of the functionalities of each management module within the controller architecture. Secondly, to tackle limited energy problem of sensor nodes, a network coding opportunistic routing method (SDN-COR) is presented based on SDWSNs. This method incorporates considerations of coding opportunities, vertical distance, and remaining energy of nodes to design a metric for encoding opportunistic routing. By combining opportunistic forwarding mechanisms, candidate forwarding sets are selected and sorted based on priority to prioritize data transmission by higher-priority nodes. Simulation results indicate that, comparing with conventional methods, this approach achieves reduction in energy consumption by an average of 21.5%, improves network throughput by 24%, and extends network lifetime by 20%.

Intelligent Traffic Light Control using Fuzzy Method (퍼지 기법을 이용한 지능형 교통 신호 제어)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1593-1598
    • /
    • 2012
  • In this paper, we propose an intelligent signal control method based on fuzzy logic applicable in real time. We design membership functions to model occupied time and the number of vehicles for each lane. A priority for each signal phase is computed by the popular Max-Min fuzzy inference based on control rules and membership degrees of prepared two functions at any given time. A tie breaking scheme is considering weighted sum of the rate of occupied time per number of vehicles in that block and the standard deviation of these blocks. Only a signal phase with the highest priority is opened and all others are closed and the duration of the phase opening is computed proportional to the rate of number of weighting vehicles in that signal per all weighted vehicles. The simulation result shows that the proposed method is more efficient than the static control in all simulation conditions in $2{\times}3$ experimental designs with the number of vehicles in intersection and congestion degrees that have all three levels.

Augmented Reality based Low Power Consuming Smartphone Control Scheme

  • Chung, Jong-Moon;Ha, Taeyoung;Jo, Sung-Woong;Kyong, Taehyun;Park, So-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5168-5181
    • /
    • 2017
  • The popularity of augmented reality (AR) applications and games are in high demand. Currently, the best common platform to implement AR services is on a smartphone, as online games, navigators, personal assistants, travel guides are among the most popular applications of smartphones. However, the power consumption of an AR application is extremely high, and therefore, highly adaptable and dynamic low power control schemes must be used. Dynamic voltage and frequency scaling (DVFS) schemes are widely used in smartphones to minimize the energy consumption by controlling the device's operational frequency and voltage. DVFS schemes can sometimes lead to longer response times, which can result in a significant problem for AR applications. In this paper, an AR response time monitor is used to observe the time interval between the AR image input and device's reaction time, in order to enable improved operational frequency and AR application process priority control. Based on the proposed response time monitor and the characteristics of the Linux kernel's completely fair scheduler (CFS) (which is the default scheduler of Android based smartphones), a response time step control (RSC) scheme is proposed which adaptively adjusts the CPU frequency and interactive application's priority. The experimental results show that RSC can reduce the energy consumption up to 10.41% compared to the ondemand governor while reliably satisfying the response time performance limit of interactive applications on a smartphone.

A Priority-based MAC Protocol to Support QoS in Ad-hoc Networks (애드 혹 네트워크 QoS 지원을 위한 우선순위 기반 MAC 프로토콜)

  • Wang, Weidong;Seo, Chang-Keun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.80-89
    • /
    • 2005
  • In IEEE 802.11 and 802.11e for ad hoc networks, DCF and EDCA use a contention-based protocol called CSMA/CA, which is simple to implement efficient when the system is light loaded. But the performance of CSMA/CA decreases dramatically when the system load is heavy because of increasing collisions. In PCF and HCF modes, stations are controlled by a base station by polling, no collision ever occurs. However, when the system load is light, the performance is poor because few stations have data to transfer. More important, PCF and HCF can not be used in the ad hoc networks. In this paper, we address a priority-based distributed polling mechanism (PDPM) that implements polling scheme into DCF or EDCA modes for ad hoc networks by adding a polling approach before every contention-based procedure. PDPM takes the advantages of polling mechanism that avoids most of collisions in a high load condition. At the same time, it also keeps the contention-based mechanism for a light loaded condition. PDPM provides quality of service (QoS) with fewer collisions and higher throughput compared with IEEE 802.11e.

Influence Factors of Aerial Environment on Project Schedule Management

  • Hong, Jun-pyo;Lim, Hyoung-chul
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.608-611
    • /
    • 2015
  • The objectives of this research are 1) control of schedule or improvement of management for aerial environment, 2) distribution of responsibility to the parties concerned (factory, material company, construction company, design and engineering, occupancy). The results show the relative priority of the four major items in wall-based apartment buildings and in column-based apartment buildings. An analysis of the parties responsible for improvement based on the IAQ results shows more efforts to improve IAQ are needed in material factories and engineering/design companies.

  • PDF

TPC Algorithm for Fault Diagnosis of CAN-Based Multiple Sensor Network System (CAN 기반 다중센서 네트워크 시스템의 고장진단을 위한 TPC알고리즘)

  • Ha, Hwimyeong;Hwang, Yuseop;Jung, Kyungsuk;Kim, Hyunjun;Lee, Bongjin;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • This paper proposes a new TPC (Transmission Priority Change) algorithm which is used to diagnose failures of a CAN (Controller Area Network) based network system for the oil tank monitoring. The TPC algorithm is aimed to increase the total amount of data transmission and to minimize the latency for an urgent message by changing transmission priority. The urgency of the data transmission has been determined by the conditions of sensors. There are multiple sensors inside of the oil tank, such as temperature, valve, pressure and level sensors. When the sensors operate normally, the sensory data can be collected through the CAN network by the monitoring system. However when there is a dangerous situation or failure situation happened at a sensor, the data need to be handled quickly by the monitoring system, which is implemented by using the TPC algorithm. The effectiveness of the TPC algorithm has been verified by the real experiments. In addition, this paper introduces a method that people can figure out the condition of oil tanks and also can perform the fault diagnosis in real-time by using transmitted packet data. By applying this TPC algorithm to various industries, the convenience and reliability of multiple sensors network system can be improved.

An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority (우선순위 기반의 상황충돌 해석 조명제어시스템 구현)

  • Seo, Won-Il;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.23-33
    • /
    • 2016
  • The current smart lighting is shaped to offer the lighting environment suitable for current context, after identifying user's action and location through a sensor. The sensor-based context awareness technology just considers a single user, and the studies to interpret many users' various context occurrences and conflicts lack. In existing studies, a fuzzy theory and algorithm including ReBa have been used as the methodology to solve context conflict. The fuzzy theory and algorithm including ReBa just avoid an opportunity of context conflict that may occur by providing services by each area, after the spaces where users are located are classified into many areas. Therefore, they actually cannot be regarded as customized service type that can offer personal preference-based context conflict. This paper proposes a priority-based LED lighting control system interpreting multiple context conflicts, which decides services, based on the granted priority according to context type, when service conflict is faced with, due to simultaneous occurrence of various contexts to many users. This study classifies the residential environment into such five areas as living room, 'bed room, study room, kitchen and bath room, and the contexts that may occur within each area are defined as 20 contexts such as exercising, doing makeup, reading, dining and entering, targeting several users. The proposed system defines various contexts of users using an ontology-based model and gives service of user oriented lighting environment through rule based on standard and context reasoning engine. To solve the issue of various context conflicts among users in the same space and at the same time point, the context in which user concentration is required is set in the highest priority. Also, visual comfort is offered as the best alternative priority in the case of the same priority. In this manner, they are utilized as the criteria for service selection upon conflict occurrence.

Dynamic Channel Allocation Control with thresholds in Wireless Cellular Networks using Simpy

  • Cao, Yang;Ro, Cheul-Woo
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.19-22
    • /
    • 2012
  • New and handoff calls control mechanisms are the key point to wireless cellular networks. In this paper, we present an adaptive algorithm for dynamic channel allocation scheme with guard channels and also with handoff calls waiting queue ensuring that handoff calls take priority over new calls. Our goal is to find better tradeoff between handoffs and new calls blocking probabilities in order to achieve more efficient channel utilization. Simpy is a Python based discrete event simulation system. We use Simpy to build our simulation models to get analytical data.