
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, Oct. 2017 5168
Copyright ⓒ2017 KSII

Augmented Reality based Low Power
Consuming Smartphone Control Scheme

*Jong-Moon Chung, Taeyoung Ha, Sung-Woong Jo, Taehyun Kyong, and So-Yun Park

School of Electrical and Electronic Engineering, Yonsei University
Seoul, South Korea

[e-mail: jmc@yonsei.ac.kr, taeyoungha@yonsei.ac.kr, cswo02@yonsei.ac.kr, nvidia@yonsei.ac.kr,
parksoyun89@yonsei.ac.kr]

*Corresponding author: Jong-Moon Chung

Received May 27, 2017; revised October 17, 2017; accepted October 19, 2017;
published October 31, 2017

Abstract

The popularity of augmented reality (AR) applications and games are in high demand.
Currently, the best common platform to implement AR services is on a smartphone, as online
games, navigators, personal assistants, travel guides are among the most popular applications
of smartphones. However, the power consumption of an AR application is extremely high, and
therefore, highly adaptable and dynamic low power control schemes must be used. Dynamic
voltage and frequency scaling (DVFS) schemes are widely used in smartphones to minimize
the energy consumption by controlling the device’s operational frequency and voltage. DVFS
schemes can sometimes lead to longer response times, which can result in a significant
problem for AR applications. In this paper, an AR response time monitor is used to observe the
time interval between the AR image input and device’s reaction time, in order to enable
improved operational frequency and AR application process priority control. Based on the
proposed response time monitor and the characteristics of the Linux kernel’s completely fair
scheduler (CFS) (which is the default scheduler of Android based smartphones), a response
time step control (RSC) scheme is proposed which adaptively adjusts the CPU frequency and
interactive application’s priority. The experimental results show that RSC can reduce the
energy consumption up to 10.41% compared to the ondemand governor while reliably
satisfying the response time performance limit of interactive applications on a smartphone.

Keywords: Augmented reality, DVFS, ondemand governor

A preliminary version of this paper appeared in ICONI 2016 (“Response time Analysis of Augmented Reality
based Smartphone Applications”), and was selected as an outstanding paper. This version exapands on the
experimental setup and provides further performance analysis on scheduling a CPU of smartphone. This research
was supported by a grant [MOIS-DP-2015-10] through the Disaster and Safety Management Institute funded by
Ministry of the Interior and Safety of Korean government.

https://doi.org/10.3837/tiis.2017.10.026 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 5169

1. Introduction

Energy consumption reduction is one of the most important design objectives in battery
operated smartphones and mobile devices, especially for smartphones running augmented
reality (AR) applications. This is why Android based smartphones use dynamic voltage and
frequency scaling (DVFS) techniques, which trade-off processing speed for improved energy
efficiency by controlling the frequency and voltage of the central processing unit (CPU).
However, a reduced processing speed will lead to slower response time for AR applications,
which is a critical issue because AR views tend to change fast as the user’s smartphone camera
view changes. The response time is usually defined as the time between a user’s input and the
device’s reaction. Most applications running on smartphones are usually interactive
applications, which require the user’s input, such as games, web browser, and social network
services (SNS). For interactive applications, the response time is a very important part of user
experience. Among interactive applications, AR is among the most computationally
demanding application. It is noted that users commonly feel discomfort when the response
time of an interactive application exceeds 150 ms [1]. Therefore, it is important to satisfy the
response time limit when a user runs an AR interactive application. In addition, when the AR
interactive application runs with other applications, it is more difficult to satisfy the response
time limit because the interactive application can be preempted by simultaneously running
other applications. Android is the most widely used operating system (OS) for smart devices,
which runs on a Linux kernel. Although satisfying the response time limit is an important issue,
the Linux kernel does not provide response time information of the smartphone. Therefore, in
this paper, a response time monitor is proposed, which periodically measures the response
time.

The proposed response time step control (RSC) algorithm is different compared to the other
DVFS schemes as it monitors the response time and estimates response time variations based
on adaptive control changes made to the CPU frequency and interactive application’s
scheduling priority to achieve energy consumption minimization while satisfying the target
application’s response time requirements.

2. Background and Related Work

2.1 Mobile AR
AR is a technology that adds computer generated virtual information or images on the real
view of a device’s display to provide useful information of selected objects within the image.
Whereas a user is involved in a virtual environment when using virtual reality (VR)
technology, a user can use the augmented information or interact with virtual images imposed
on the real-world environment image through AR technology. Although AR technology was
innitially proposed over forty years ago, AR based practical systems have not been widely
avaliable due to technical difficuilties in device type and form factor, level of accuracy and
reliability, as well as computation load and power consumption [2]. However, recent
advancements in hardware and software of mobile computing devices make mobile AR
systems (MARSs) and applications possible [3]. In [3], MARS is defined as a system that
combines real objects with virtual augmentation, which is based on dynamic three dimentional
(3D) objects, and runs in real-time and in mobile mode. In addition, the basic components of

5170 Chung et al.: Augmented Reality based Low Power Consuming Smartphone Control Scheme

MARS include a computational hardware platform, display, tracking, wireless network,
wearable input and interaction, and software [3]. According to the advancements in
smartphone specficiations, smartphones have been able to equip with the basic components of
MARS. Furthermore, as smartphones are widely used aroud the world, the number of people
using smartphone based mobile AR applications is expected to increase significantly [4].
Practical example of a mobile AR application is the navigation system [5]. Navigation is an
outdoor-oriented application for mobile AR, and mobile AR based navigation systems use a
points of interst, user-created annotations, or graphics based on the global positioning system
(GPS) location and magnetometer of a mobile device [6]. Mobile AR based navigation
systems are useful to travelers, because these system can provide guidance to a destination as
well as information about the surrouding area.

A user experience (UX) is defined as “a person’s perceptions and responses that result from
the use or anticipated use of a product, system or service” in the ISO standard, where the
response time is the most important part of UX for the interactive systems. Furthermore, in
recent years, the principal goal in designing an interactive system is achieve satisfaction to
users about the UX [6].

AR Image
Input

Device’s
Reaction

Response Time of
AR Application

Tower Bridge
London, UK
A100 Tower Bridge Road

Image
Acquisition

Feature
Extraction

Feature
Matching

Geometric
Verification

Associated
Information

Retrieval

Fig. 1. Effects of CFS and DVFS on Throughput

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 5171

As introduced in [7], mobile AR procedures can be divided into 5 steps, which are image
acquisition, feature extraction, feature matching, geometric verification, and associated
information retrieval. As shown in Fig. 1, the response time of an AR application can be
represented as the time interval between the image input for the image acquisition process and
the device’s reaction time, which is the time consumed to have the associated information
appear on the screen of the smartphone. Therefore, the proposed AR response time monitor is
used to observe the time interval between the AR image input and the smartphone’s reaction
time.

2.2 Completely Fair Scheduler
The CPU scheduler of the Linux kernel has an effect on response time performance because it
determines the task execution order and interval [8,9]. The completely fair scheduler (CFS) is
the default scheduler of the Linux kernel since Linux kernel version 2.6.23 (which was
released in Oct. 2007) to Linux kernel version 4.1.2 (the newest version when this article was
written). In addition, all recently released Android based smartphones (from Android 4.2 Jelly
Bean to the newest 7.1.2 Nougat) use Linux kernel version 3.4.0 in which CFS is the default
scheduler. In CFS, each application has own weight according to its nice value, which is an
integer between -20 and 19. When the nice value of an application is decreased by 1, the
weight of the application is increased by 1.25 in the Linux kernel version 3.4.0. CFS executes
each application according to its time slice, and the time slice of application i is denoted as

()∑ ∈∀
=

Sj nnt ji wpwiS /)(, where inw is the weight of application i with nice value in , S is

the set of all applications being processed by the CPU, and p is the period. The period p is
defined as]75.0,6max[Np = (in units of millisecond) in Linux kernel version 3.4.0, where
N is the number of applications in set S.

2.3 DVFS
In a smartphone, the display and radio modules consume a large amount of the system’s
energy [10]. The energy consumption amount depends on the component’s power
consumption profile as well as the application’s display image (and user’s brightness settings)
and the amount of data traffic the application is required to send and receive [11]. AR
applications use all of these resources of the smartphone, and therefore, the energy
consumption of AR services is extremely energy consuming. However, the energy
consumption of the CPU can be controlled at the kernel and OS level by adjusting the CPU
cores’ operational frequencies [11,12,13]. Therefore, the proposed scheme focuses on
reducing the energy consumption of the CPU while satisfying the response time performance
of the application. DVFS in one of the most commonly used CPU energy management
techniques. In [14], the power-aware decoder was proposed, which allows OS to adaptively
control CPU frequency by delivering information for video decoding based on a low-power
microprocessor. In [15], a DVFS scheme for optimizing mobile 3D rendering was proposed. A
Linux kernel module called the governor uses DVFS to reduce the energy consumption of the
CPU. The most commonly used governor is definitely the ondemand governor, which is used
as the default governor of Android based smartphones. The ondemand governor increases the
CPU frequency to its highest value when the CPU load (LCPU) is above its predefined limit, but
decreases the CPU frequency step by step when LCPU is below the predefined limit [16]. As
DVFS techniques are based only on LCPU [16,17,18], sometimes this results in longer response
times for interactive applications. In order to address the problem in load based DVFS
schemes, several approaches have been proposed. Cinder [19] was proposed, which manages

5172 Chung et al.: Augmented Reality based Low Power Consuming Smartphone Control Scheme

the energy usage at the OS level for mobile phones and other energy-constrained computing
devices by restricting the power level. In cases when then Cinder regulates the power
consumption level significantly, the smartphone’s response time may become very long.

3. Effects of CFS and DVFS on Throughput
Fig. 2 shows how CFS and DVFS affect the throughput of each application. Throughput is
defined here as the amount of executed task of the application in a given period by the CPU.
The throughput is influenced by both the processing speed and executed time. The processing
speed of a CPU is proportional to the CPU frequency and it is represented as the height of the
blocks in Fig. 2, where as the CPU frequency is increased, the height of the block is taller. The
executed time is proportional to the weight of each application, which is represented as the
width of the block in Fig. 2. The executed time is represented based on the time slice in CFS
and it is determined by the weight of each application.

Application 2　

Application 3　

2

3

Application 1　 1

∝Weight

∝ CPU
Frequency

3

Time

Period

Throughput in
each period

CPU

Tasks of applications

...

..

.

2
1

Fig. 2. Effects of CFS and DVFS on Throughput

CFS executes each application in a round-robin fashion. For this reason, an application
experiences preemption when other applications are executed in the same period.

4. Response Time Monitor
Fig. 3 represents the response time monitor architecture that is used in the proposed RSC
scheme. The response time is measured as the time interval between the Start time and Stop
time. The Start time is the time instant when the input event occurs (i.e., user’s input) and the
Stop time is the time instant when the results of the input event updates the display (i.e.,
device’s reaction). The Timer is used for recording the time information of events. When a
user runs an interactive application, the input event occurs by touching the screen of the
smartphone. When an input event occurs, the onTouch() function of View.OnTouchListener is
used to obtain data, which acts as the input catcher. WindowManagerService is executed
regularly in the Framework in order to manage the window. At this time, the Framwork’s
InputManager is executed by InputManage.Start() in WindowManagerService. By the
InputManager’s nativeStart function, the Android_server_InputManager_nativeStart of
NativeInputManager based on the JAVA Native Interface (JNI) is called. The
Android_server_InputManager_nativeStart’s start() executes the native code’s
InputManager::start(), and here, the InputReader is executed by the run function. When an

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 5173

input is entered, the device driver stores the value in the EventHandler’s input_event structure.
The Android OS receives this input key value through the InputReader’s
EventHub::getEvent(), and after comparing it with its key layout file, it updates the key value
of the Framework. By using this function, the input catcher perceives the input event and the
Timer records the Start time using the Event.getDownTime() function, which returns the
current time. Then, the interactive task is executed according to the input information and the
results are returned to the application. As the results need to be updated on the display, the
application sends its result to the SurfaceFlingerClient using the Framework’s surface. The
SurfaceFlingerServer collects data that is sent from the SurfaceFlingerClient and the data is
sent to the frame buffer (FB) driver through opengl and the hardware abstraction layer (HAL).
Finally, the FB driver displays the data on the display. When the layout state of the display is
changed, the OnGlobalLayout() function is invoked. By using this function, the output catcher
perceives the changes in the display and the Timer records the Stop time with the
System.nanoTime() function which returns the current time in units of nanoseconds.

User Input

Timer

Input catcher
WindowManager

Service
InputManager
in Framwork

NativeInput
Manager

InputManager
in native code

InputReader EventHub::getEv
ent()

Update display

Start time Stop time

Response time

User interface

Framwork & Kernel
System timer

Output catcher
Surface in
framworks

SurfaceFlinger
Client

SurfaceFlinger
ServerLibEGL

Gralloc HAL &
Frambuffer HAL FB driver

Fig. 3. Response time monitor implementation architecture

5. RSC Algorithm

5.1 Response Time Difference Estimation
Service time is the time that is required by the processing of the CPU to run the target
application. The service time)(fTS of an interactive application at the CPU frequency f can
be represented as }){()(βα += ffTS , where α/f is the CPU frequency-dependent
workload and β is the CPU frequency-independent workload [20,21]. By using this equation,
the service time of the AR interactive application is estimated for various CPU frequencies.
The weight of application i with nice value in is 025.1 ww

i

i
n

n
−= , which represents the

weight of the running applications with nice value 0. The nice value of the AR interactive
application is denoted as n* and its corresponding weight is 0

*
* 25.1 ww n

n
−= . The response

time of the AR interactive application *),(nfT CPUR is a function of both the CPU operational
frequency fCPU and n*. *),(nfT CPUR is influenced by the AR interactive application’s service

5174 Chung et al.: Augmented Reality based Low Power Consuming Smartphone Control Scheme

time)(fTS and preemption rate. The preemption rate is the rate of the target AR application
being preempted by other applications during its service time. The preemption rate of the AR
interactive application can be derived from the ratio of the weight distribution of all processing
tasks that share the CFS in reference to the AR interactive application’s weight
(i.e., () *'* / nSi nn www i∑ ∈∀

+), where S’ is the set of all tasks being processed by the CPU,
excluding the target AR application. In addition, the preemption rate of the AR interactive
application is affected by the CPU load of the background applications (LB). This is because
preemption of the AR interactive application occurs when the background applications are
simultaneously running with the AR application, and LB represents how often the background
applications occupy the CPU resources. Therefore, the AR interactive application will
experience a R∆ step difference in its response time if the AR interactive application’s nice
value is changed to yn* (from its current nice value n*) or the CPU frequency is changed to fx
(from the smartphone’s current CPU frequency fCPU). The step difference in response time

R∆ is represented in (1).

*

'*')()(
*

*

n

Si nBn
CPUS

n

Si nBn
xSR w

wLw
fT

w

wLw
fT

i

y

i
y ∑∑ ∈∀∈∀ +

−
+

=∆ (1)

If the CPU were to operate at fx Hz, then the AR interactive application’s (with nice value *
yn)

response time (i.e.,),(*
yxR nfT) can be obtained from the current response time *),(nfT CPUR

added to the step difference in response time R∆ as shown in (2).

RCPURyxR nfTnfT ∆+= *),()*,((2)

5.2 RSC Algorithm
In a smartphone, the number of applicable CPU frequencies and application nice values are
limited. The set of selectable CPU frequencies are defined in F={f1, f2,…, fx,…, fmax-1, fmax} and
the set of selectable nice values are defined in N={n1, n2, …, *

yn ,…, nmax-1, nmax}. The proposed
RSC algorithm’s pseudo code is presented in Fig. 4.
The algorithm first sets the CPU to its maximum frequency and the nice value of the AR
interactive application to 0, which is the default value of CFS (step 1). Since the power
consumption of the smartphone is reduced for lower CPU frequencies, the algorithm searches
for the lowest CPU frequency starting from the highest frequency (fmax), where the search will
continue in a sequence of procedures comparing the estimated response time of (2) (using the
response time step difference (step 4) of (1) at a lower CPU frequency (step 3)) to the
predefined response time limit LR (step 5). If a suitable lower frequency is found, then that
frequency is used as the new CPU frequency (step 5.1) and the search for a lower frequency
will be attempted again (step 5.2). When a lower CPU frequency cannot be found to satisfy the

RyxR LnfT ≤),(* condition (step 6), then based on the frequency next lower to fCPU (i.e., fx =
fCPU-1) the response time step difference (step 6.3) will be computed and will be tested if it can
satisfy RyxR LnfT ≤),(* (step 6.4) using a smaller nice value (i.e., higher priority) (step 6.2).

If a suitable nice value *
yn at fx is found to satisfy RyxR LnfT ≤),(* , then the frequency fx is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 5175

used as the new CPU frequency and the nice value *
yn is applied to the interactive application

(step 6.4.1) and the search for a lower frequency will be attempted again (step 6.4.2). Through
these procedures, the RSC algorithm will find the lowest frequency among F (and the required
nice value among N) that can satisfy the response time limit LR.
The proposed response time step control (RSC) algorithm is different compared to the other
DVFS schemes as it monitors the response time and estimates response time variations based
on adaptive control changes made to the CPU frequency and interactive application’s
scheduling priority to achieve energy consumption reduction while satisfying the AR
application’s response time requirements.

BEGIN
1. SET fCPU fmax, fx fmax, n*=0, *

yn n*
2. IF fCPU = f1
 2.1. GOTO END
3. SET fx fx-1
4. COMPUTE R∆ ,),(*

yxR nfT

5. IF RyxR LnfT ≤),(*
 5.1. SET fCPU fx
 5.2. GOTO step 2
6. ELSE
 6.1. IF 1

* nny =
 6.1.1. GOTO END
 6.2.SET *

yn *
1−yn

 6.3. COMPUTE R∆ ,),(*
yxR nfT

 6.3.4. IF RyxR LnfT ≤),(*

 6.4.1. SET fCPU fx, n* *
yn

 6.4.2. GOTO step 2
 6.5. ELSE GOTO step 6.1
END

Fig. 4. Pseudo code of the RSC algorithm

6. Experimental Environment and Results
The experiments were conducted on a Samsung Galaxy S4 LTE-A smartphone based on the
Linux kernel 3.4.0, which uses a Qualcomm Snapdragon 800 MSM 8974 quad-core processor
2.3 GHz CPU and Android 4.2.2 Jelly Bean operating system. The power consumption was
measured using a Monsoon FTA22D power monitor and Agilent 66321D mobile
communications DC source with battery emulator for the CPU loads of the background
applications LB=0%, 10%, 20%, and 30%. The AR interactive application was selected to be
Asphalt 8 and Facebook, which is in the high ranks of racing games and SNS in the Google
Play Store, respectively. Input events for each interactive application occurred as driving a car
in Asphalt 8 and scrolling pages in Facebook. For the experiments, the brightness of the
smartphone was set to its maximum, Wi-Fi and Bluetooth were turned off, and LTE-A was

5176 Chung et al.: Augmented Reality based Low Power Consuming Smartphone Control Scheme

turned on. The experiments were conducted when the network conditions were very good (i.e.,
minimal round trip time (RTT) conditions), and therefore, the results of the experiments are
majorly compute-bound influenced (rather than I/O-bound influenced). In addition, the
response time limit was set to

1RL =125 ms and
2RL =150 ms, and the sets of selectable CPU

frequencies and nice values are F={300, 422.4, 652.8, 729.6, 883.2, 906, 1036.8, 1190.4,
1267.2, 1467.6, 1574.4, 1728, 1958.4, 2265.6} (all in units of MHz) and N={-20, …, 0,…, 19},
respectively.
The system parameters of the smartphone and applications for implementing the RSC
algorithm are obtainable in the following way. Linux provides CPU frequency information at
/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq and information of the running
applications at /proc/{pid}/stat, which include the process identification (PID) of the
applications and the PID stat data. PID stat data includes information of the nice value,
execution time of process on user mode (utime), and kernel mode (stime). Service time of the
interactive application from time t1 to time t2 can be computed from

−+=){()(
22 ttS stimeutimefT)}(

11 tt stimeutime + /HZ in unit of ms, where HZ is a
constant value which is 100 in Linux kernel version 3.4.0. By using these obtained values,
RSC was implemented on the given experimental environment.
In order to evaluate the accuracy of (1), the response time step differences were measured for
various LB cases. In Fig. 5 and Fig. 6, the estimated response time step difference in (1) was
compared with the experimental results. Fig. 5 and Fig. 6 show the accuracy of (1) for
different nice values with maximum CPU frequency and for different CPU frequencies based
on the default nice value, respectively. For all tested cases, a good match between the
estimated response time step difference model and the actual measured values were confirmed.
The average error of Fig. 5 and Fig. 6 are 0.103 ms and 0.698 ms respectively, and in other
cases (for different frequencies and nice values) the errors between measured values and
estimated values did not exceed 0.837 ms.

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0

1

2

3

4

5

6

7

8

Nice value (n*)

R
es

po
ns

e
tim

e
st

ep
 d

iff
er

en
ce

 [m
s]

Modeling (LB=0%)

Measurement (LB=0%)

Modeling (LB=10%)

Measurement (LB=10%)

Modeling (LB=20%)

Measurement (LB=20%)

Modeling (LB=30%)

Measurement (LB=30%)

Fig. 5. Accuracy of the response time step difference of (1) with nice value variations.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 5177

1574 MHz 1728 MHz 1958 MHz 2265 MHz
0

5

10

15

20

25

30

35

Frequency (fCPU)

R
es

po
ns

e
tim

e
st

ep
 d

iff
er

en
ce

 [m
s]

Modeling (LB=20%)

Measurement (LB=20%)

Modeling (LB=30%)

Measurement (LB=30%)

Modeling (LB=0%)

Measurement (LB=0%)

Modeling (LB=10%)

Measurement (LB=10%)

Fig. 6. Accuracy of the response time step difference of (1) with CPU frequency variations.

In order to compare the energy consumption, the energy model of [12] was considered in the
measurement analysis. Based on repeated experiments conducted on the smartphones, the
applications were invoked in a periodic fashion, where the energy consumption average over a
single period is used in the comparison. The system energy totalE is obtained from the
combination of dynamic energy and static energy in the form of idleRDtotal PTTEE)(max −+=
[12]. The dynamic energy DE is a function of the CPU clock frequency and includes the
system components, such as, CPU, main memory, and I/O devices [12,13]. The static energy
consumption profile can be obtained from idleR PTT)(max − , where maxT is the maximum
response time, RT is the current response time of the system, and idleP is the idle time power
consumption [12], which was measured using the Monsoon FTA22D and Agilent 66321D.

idleP is required for purposes such as keeping the system clock running and maintaining the
basic circuits [13]. After experiments on RSC were conducted, the same average power level
of RSC was used as the power level in Cinder, such that a fair response time performance
comparison could be made. Fig. 7 presents the energy savings percentage (%) of the Cinder
scheme [19] and the proposed RSC scheme (respectively) in reference to the energy
consumption of the ondemand governor, measured on the same Samsung Galaxy S4
smartphone with all equal test conditions. Since the amount of energy consumption of the
smartphone’s display and other modules were all the same for all test scenarios, the energy
savings percentage of Cinder and RSC presented in Fig. 7 can be considered as the savings in
CPU energy. Fig. 8 presents the response time performance of RSC and Cinder based on
response time limits and applications. In Fig. 7, for the case where LB is 0%, the energy is
overused due to an excessively enlarged response time. However, energy savings are obtained
when LB is 10%, 20%, and 30%. The results show that RSC can provide a savings in energy
consumption up to 10.41% and 10.22% for Asphalt 8 and Facebook, respectively, compared to
the ondemand governor. However, for the 40% and higher background load cases, the CPU

5178 Chung et al.: Augmented Reality based Low Power Consuming Smartphone Control Scheme

operates at its maximum frequency, and therefore, no energy savings were obtainable from
RSC or Cinder. In addition, when RL is small (e.g.,

1RR LL =), the energy saving is less than

when RL is large (e.g.,
2RR LL =). This is because, a reduced RL requires the smartphone to

operate at a higher frequency. In Fig. 8, when BL is 20% and 30%, the response time of the
smartphones using the ondemand governor and Cinder exceeds

1RL and
2RL . However, when

BL =10%, 20%, and 30%, RSC can maintain a response time below the response time limit.

RL

RL

RL

RL

RL

RL

RL

RL

Fig. 7. Energy savings performance of the RSC algorithm

RL

RL

RL

RL RL
RL

RL
RL

Fig. 8. Response time performance of the RSC algorithm

8. Conclusions
In this paper, the RSC algorithm is proposed, which controls both the CPU frequency and
priority of the AR interactive application by estimating the difference in response time. RSC
gradually reduces the CPU frequency to the minimum CPU frequency which does not exceed
LR. Experimental results show that RSC can save up to 10.41% of energy when compared to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 5179

the ondemand governor for the 30% background load case. Furthermore, by adapting the
priority of the AR interactive application, the RSC algorithm is able to keep the response time
of the smartphone under the desired response time limit LR even for the cases where the
background applications have a 30% load condition.

References
[1] N. Tolia, D. G. Andersen, and M. Satyanarayanan, "Quantifying Interactive User Experience on

Thin Clients," IEEE Computer, vol. 39, no. 3, pp. 46-52, March, 2006. Article (CrossRef Link).
[2] F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in Augmented Reality Tracking, Interaction

and Display: A Review of Ten Years of ISMAR,” in Proc. of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, pp. 193-202, September 15-18, 2008.
Article (CrossRef Link).

[3] G. Papagiannakis, G. Singh, and N. Magnenat-Thalmann, “A survey of mobile and wireless
technologies for augmented reality systems,” Computer Animation and Virtual Worlds, vol. 19, no.
1, pp. 3-22, 2008. Article (CrossRef Link).

[4] J. Wither, S. DiVerdi, and T. Höllerer, “Annotation in outdoor augmented reality,” Computers &
Graphics, vol. 33, no. 6, pp. 679-689, December, 2009. Article (CrossRef Link).

[5] T. Höllerer and S. Feiner, “Mobile augmented reality,” Telegeoinformatics: Location-Based
Computing and Services, Taylor and Francis Books Ltd., London, 2004.

[6] T. Olsson and M. Salo, “Online User Survey on Current Mobile Augmented Reality Applications,”
in Proc. of the 10th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp.
75-84, October 26-29, 2011. Article (CrossRef Link).

[7] J.-M. Chung, Y.-S. Park, J.-H. Park, and H. Cho, "Adaptive Cloud Offloading of Augmented
Reality Applications on Smart Devices for Minimum Energy Consumption," KSII Transactions on
Internet and Information Systems, vol. 9, no. 8, pp. 3090-3102, August, 2015.

[8] S. Wang, Y. Chen, W. Jiang, P. Li, T. Dai, and Y. Cui, "Fairness and Interactivity of Three CPU
Schedulers in Linux," in Proc. of Int. Conf. on Embedded and Real-Time Computing Systems and
Applications, pp. 172-177, August 24-26, 2009. Article (CrossRef Link).

[9] S. Huh, J. Yoo, and S. Hong, "Improving Interactivity via VT-CFS and Framework-Assisted Task
Characterization for Linux/Android Smartphones," in Proc. of Int. Conf. on Embedded and
Real-Time Computing Systems and Applications, pp. 250-259, August 19-22, 2012.
Article (CrossRef Link).

[10] A. Carroll and G. Heiser, "An Analysis of Power Consumption in a Smartphone," in Proc. of
USENIX Annual Technical Conference, pp. 1-14, June 23-25, 2010.

[11] C. Yoon, D. Kim, W. Jung, and C. Kang, "Appscope: Application Energy Metering Framework for
Android Smartphone Using Kernel Activity Monitoring," in Proc. of USENIX Annual Technical
Conference, pp. 36-49, June 13-15, 2012.

[12] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser, "Koala: A Platform for OS-Level Power
Management," in Proc. of the 4th ACM European Conf. on Computer systems, pp. 289-302, April
1-3, 2009. Article (CrossRef Link).

[13] V. Devadas and H. Aydin, "On the Interplay of Voltage/Frequency Scaling and Device Power
Management for Frame-based Real-time Embedded Applications," IEEE Transactions on
Computers, vol. 61, no. 1, pp. 31-44, January, 2012. Article (CrossRef Link).

[14] J. Pouwelse, K. Langendoen, and, H. Sips, “Dynamic Voltage Scaling on a Low-Power
Microprocessor,” in Proc. of the 7th Annual Int. Conf. on Mobile computing and networking, pp.
251-259, Jul. 2001.

[15] B. C. Mochocki, K. Lahiri, and S. Cadambi, “Signature-Based Workload Estimation for Mobile
3D Graphics,” in Proc. of the 43rd Annual Design Automation Conf., pp. 592-597, Jul. 2006.

[16] V. Pallipadi and A. Starikovskiy, "The Ondemand Governor," in Proc. of Ottawa Linux
Symposium, pp. 139-152, July 19-20, 2006.

https://doi.org/10.1109/MC.2006.101
https://doi.org/10.1109/ISMAR.2008.4637362
https://doi.org/10.1002/cav.v19:1
https://doi.org/10.1016/j.cag.2009.06.001
https://doi.org/10.1109/ISMAR.2011.6092372
https://doi.org/10.1109/rtcsa.2009.26
https://doi.org/10.1109/rtcsa.2012.14
https://doi.org/10.1145/1519065.1519097
https://doi.org/10.1109/TC.2010.248

5180 Chung et al.: Augmented Reality based Low Power Consuming Smartphone Control Scheme

[17] D. Brodowski, "CPUFreq Governors,"
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt, 2013.

[18] "Interactive Governor," https://lkml.org/lkml/2012/2/7/483, 2012.
[19] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazieres, and N. Zeldovich, "Energy

Management in Mobile Devices with the Cinder Operating System," in Proc. of the 6th Conf. on
Computer Systems, pp. 139-152, April 10-13, 2011. Article (CrossRef Link).

[20] M. Marinoni and G. Buttazzo, "Elastic DVS Management in Processors with Discrete
Voltage/Frequency Modes," IEEE Transactions on Industrial Informatics, vol. 3, no. 1, pp. 51-62,
February, 2007. Article (CrossRef Link)

[21] S.-W. Jo, T. Ha, T. Kyong, and J.-M. Chung, “Response Time Constrained CPU Frequency and
Priority Control Scheme for Improved Power Efficiency in Smartphones,” IEICE Transactions on
Information and Systems, vol. E100-D, no.1, pp. 65-78, January, 2017.

Dr. Jong-Moon Chung received B.S. and M.S. degrees in electronic engineering
from Yonsei University, Seoul, Korea, in 1992 and 1994, respectively, and Ph.D.
degree in electrical engineering from the Pennsylvania State University, University
Park, PA, USA, in 1999. Since 2005, he has been a Professor in the School of
Electrical & Electronic Engineering, Yonsei University, Seoul, Republic of Korea
(ROK). From 1997 to 1999, he served as an Assistant Professor and Instructor in the
Department of Electrical Engineering, Pennsylvania State University, University
Park. From 2000 to 2005, he was with the School of Electrical & Computer
Engineering, Oklahoma State University (OSU), Stillwater, OK, USA as a Tenured
Associate Professor and Director of the OCLNB and ACSEL labs. His research is in
the area of smartphone design, network scheduler design, M2M, IoT, AR, CR, SDN,
NFV, MANET, VANET, WSN, satellite & mobile communications, and broadband
QoS networking. In 2000 he received the First Place Outstanding Paper Award at the
IEEE EIT 2000 conference. In 2003 and 2004, respectively, he received the
Distinguished Faculty Award and the Technology Innovator Award, both from OSU.
As an Associate Professor at OSU, in October 2005, he received the Regents
Distinguished Research Award and in September the same year he received the
Halliburton Outstanding Young Faculty Award. In 2008 he received the Outstanding
Accomplishment Professor Award from Yonsei University. In 2012 he received the
ROK Defense Acquisition Program Administration (DAPA) Award. He is a senior
member of the IEEE, member of the IET and IEICE, and a life member of the HKN,
KSII, IEIE, and KICS. He has served as the General Co-Chair of IEEE MWSCAS
2011, Local Chair and TPC Co-Chair of IEEE VNC 2012, and Local Chair of IEEE
WF-IoT 2014. He is Co-EiC of the KSII TIIS, Editor of the IEEE Transactions on
Vehicular Technology, Section Editor of the ETRI Journal, and Editor of the ICT
Express.

Taeyoung Ha received his B.S. degree from the School of Electrical and Electronic
Engineering, Yonsei University, Korea, in 2012. He is currently a Ph.D. candidate in
the School of Electrical and Electronic Engineering and a research member of the
Communications & Networking Laboratory (CNL). His research focuses on low
power embedded systems, real-time systems, mobile and ad hoc wireless networks,
and MAC protocols.

https://doi.org/10.1145/1966445.1966459
https://doi.org/10.1109/TII.2006.890494

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 5181

Sung-Woong Jo received his B.S. degree from the School of Electrical and
Electronic Engineering, Yonsei University, Korea, in 2011. He is currently a Ph.D.
candidate in the School of Electrical and Electronic Engineering and a research
member of the CNL. His research focuses on low power embedded systems, real-time
systems, QoS scheduling, and wireless networks.

Taehyun Kyong received his B.S. and M.S. degree from the School of Electrical
and Electronic Engineering, Yonsei University, Korea. He is currently working with
LG Electronics. His research focuses on low power designs, computer architecture,
and wireless sensor networks.

So-Yun Park received his B.S. degree from the School of Electrical and Electronic
Engineering, Yonsei University, Korea, in 2015. She is a MS candidate in the School
of Electrical and Electronic Engineering and a research member of the CNL.

