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Abstract 
 

The popularity of augmented reality (AR) applications and games are in high demand. 
Currently, the best common platform to implement AR services is on a smartphone, as online 
games, navigators, personal assistants, travel guides are among the most popular applications 
of smartphones. However, the power consumption of an AR application is extremely high, and 
therefore, highly adaptable and dynamic low power control schemes must be used. Dynamic 
voltage and frequency scaling (DVFS) schemes are widely used in smartphones to minimize 
the energy consumption by controlling the device’s operational frequency and voltage. DVFS 
schemes can sometimes lead to longer response times, which can result in a significant 
problem for AR applications. In this paper, an AR response time monitor is used to observe the 
time interval between the AR image input and device’s reaction time, in order to enable 
improved operational frequency and AR application process priority control. Based on the 
proposed response time monitor and the characteristics of the Linux kernel’s completely fair 
scheduler (CFS) (which is the default scheduler of Android based smartphones), a response 
time step control (RSC) scheme is proposed which adaptively adjusts the CPU frequency and 
interactive application’s priority. The experimental results show that RSC can reduce the 
energy consumption up to 10.41% compared to the ondemand governor while reliably 
satisfying the response time performance limit of interactive applications on a smartphone. 
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1. Introduction 

Energy consumption reduction is one of the most important design objectives in battery 
operated smartphones and mobile devices, especially for smartphones running augmented 
reality (AR) applications. This is why Android based smartphones use dynamic voltage and 
frequency scaling (DVFS) techniques, which trade-off processing speed for improved energy 
efficiency by controlling the frequency and voltage of the central processing unit (CPU). 
However, a reduced processing speed will lead to slower response time for AR applications, 
which is a critical issue because AR views tend to change fast as the user’s smartphone camera 
view changes. The response time is usually defined as the time between a user’s input and the 
device’s reaction. Most applications running on smartphones are usually interactive 
applications, which require the user’s input, such as games, web browser, and social network 
services (SNS). For interactive applications, the response time is a very important part of user 
experience. Among interactive applications, AR is among the most computationally 
demanding application. It is noted that users commonly feel discomfort when the response 
time of an interactive application exceeds 150 ms [1]. Therefore, it is important to satisfy the 
response time limit when a user runs an AR interactive application. In addition, when the AR 
interactive application runs with other applications, it is more difficult to satisfy the response 
time limit because the interactive application can be preempted by simultaneously running 
other applications. Android is the most widely used operating system (OS) for smart devices, 
which runs on a Linux kernel. Although satisfying the response time limit is an important issue, 
the Linux kernel does not provide response time information of the smartphone. Therefore, in 
this paper, a response time monitor is proposed, which periodically measures the response 
time.  

The proposed response time step control (RSC) algorithm is different compared to the other 
DVFS schemes as it monitors the response time and estimates response time variations based 
on adaptive control changes made to the CPU frequency and interactive application’s 
scheduling priority to achieve energy consumption minimization while satisfying the target 
application’s response time requirements. 

2. Background and Related Work 

2.1 Mobile AR 
AR is a technology that adds computer generated virtual information or images on the real 
view of a device’s display to provide useful information of selected objects within the image. 
Whereas a user is involved in a virtual environment when using virtual reality (VR) 
technology, a user can use the augmented information or interact with virtual images imposed 
on the real-world environment image through AR technology. Although AR technology was 
innitially proposed over forty years ago, AR based practical systems have not been widely 
avaliable due to technical difficuilties in device type and form factor, level of accuracy and 
reliability, as well as computation load and power consumption [2]. However, recent 
advancements in hardware and software of mobile computing devices make mobile AR 
systems (MARSs) and applications possible [3]. In [3], MARS is defined as a system that 
combines real objects with virtual augmentation, which is based on dynamic three dimentional 
(3D) objects, and runs in real-time and in mobile mode. In addition, the basic components of 
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MARS include a computational hardware platform, display, tracking, wireless network, 
wearable input and interaction, and software [3]. According to the advancements in 
smartphone specficiations, smartphones have been able to equip with the basic components of 
MARS. Furthermore, as smartphones are widely used aroud the world, the number of people 
using smartphone based mobile AR applications is expected to increase significantly [4]. 
Practical example of a mobile AR application is the navigation system [5]. Navigation is an 
outdoor-oriented application for mobile AR, and mobile AR based navigation systems use a 
points of interst, user-created annotations, or graphics based on the global positioning system 
(GPS) location and magnetometer of a mobile device [6]. Mobile AR based navigation 
systems are useful to travelers, because these system can provide guidance to a destination as 
well as information about the surrouding area.  

A user experience (UX) is defined as “a person’s perceptions and responses that result from 
the use or anticipated use of a product, system or service” in the ISO standard, where the 
response time is the most important part of UX for the interactive systems. Furthermore, in 
recent years, the principal goal in designing an interactive system is achieve satisfaction to 
users about the UX [6]. 
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Fig. 1. Effects of CFS and DVFS on Throughput 
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As introduced in [7], mobile AR procedures can be divided into 5 steps, which are image 
acquisition, feature extraction, feature matching, geometric verification, and associated 
information retrieval. As shown in Fig. 1, the response time of an AR application can be 
represented as the time interval between the image input for the image acquisition process and 
the device’s reaction time, which is the time consumed to have the associated information 
appear on the screen of the smartphone. Therefore, the proposed AR response time monitor is 
used to observe the time interval between the AR image input and the smartphone’s reaction 
time. 

2.2 Completely Fair Scheduler 
The CPU scheduler of the Linux kernel has an effect on response time performance because it 
determines the task execution order and interval [8,9]. The completely fair scheduler (CFS) is 
the default scheduler of the Linux kernel since Linux kernel version 2.6.23 (which was 
released in Oct. 2007) to Linux kernel version 4.1.2 (the newest version when this article was 
written). In addition, all recently released Android based smartphones (from Android 4.2 Jelly 
Bean to the newest 7.1.2 Nougat) use Linux kernel version 3.4.0 in which CFS is the default 
scheduler. In CFS, each application has own weight according to its nice value, which is an 
integer between -20 and 19. When the nice value of an application is decreased by 1, the 
weight of the application is increased by 1.25 in the Linux kernel version 3.4.0. CFS executes 
each application according to its time slice, and the time slice of application i is denoted as 

( )∑ ∈∀
=

Sj nnt ji wpwiS /)( , where inw  is the weight of application i with nice value in  , S is 

the set of all applications being processed by the CPU, and p is the period. The period p is 
defined as ]75.0,6max[ Np =  (in units of millisecond) in Linux kernel version 3.4.0, where 
N is the number of applications in set S. 

2.3 DVFS 
In a smartphone, the display and radio modules consume a large amount of the system’s 
energy [10]. The energy consumption amount depends on the component’s power 
consumption profile as well as the application’s display image (and user’s brightness settings) 
and the amount of data traffic the application is required to send and receive [11]. AR 
applications use all of these resources of the smartphone, and therefore, the energy 
consumption of AR services is extremely energy consuming. However, the energy 
consumption of the CPU can be controlled at the kernel and OS level by adjusting the CPU 
cores’ operational frequencies [11,12,13]. Therefore, the proposed scheme focuses on 
reducing the energy consumption of the CPU while satisfying the response time performance 
of the application. DVFS in one of the most commonly used CPU energy management 
techniques. In [14], the power-aware decoder was proposed, which allows OS to adaptively 
control CPU frequency by delivering information for video decoding based on a low-power 
microprocessor. In [15], a DVFS scheme for optimizing mobile 3D rendering was proposed. A 
Linux kernel module called the governor uses DVFS to reduce the energy consumption of the 
CPU. The most commonly used governor is definitely the ondemand governor, which is used 
as the default governor of Android based smartphones. The ondemand governor increases the 
CPU frequency to its highest value when the CPU load (LCPU) is above its predefined limit, but 
decreases the CPU frequency step by step when LCPU is below the predefined limit [16]. As 
DVFS techniques are based only on LCPU [16,17,18], sometimes this results in longer response 
times for interactive applications. In order to address the problem in load based DVFS 
schemes, several approaches have been proposed. Cinder [19] was proposed, which manages 
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the energy usage at the OS level for mobile phones and other energy-constrained computing 
devices by restricting the power level. In cases when then Cinder regulates the power 
consumption level significantly, the smartphone’s response time may become very long.  

3. Effects of CFS and DVFS on Throughput 
Fig. 2 shows how CFS and DVFS affect the throughput of each application. Throughput is 
defined here as the amount of executed task of the application in a given period by the CPU. 
The throughput is influenced by both the processing speed and executed time. The processing 
speed of a CPU is proportional to the CPU frequency and it is represented as the height of the 
blocks in Fig. 2, where as the CPU frequency is increased, the height of the block is taller. The 
executed time is proportional to the weight of each application, which is represented as the 
width of the block in Fig. 2. The executed time is represented based on the time slice in CFS 
and it is determined by the weight of each application. 
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Fig. 2. Effects of CFS and DVFS on Throughput 

 
CFS executes each application in a round-robin fashion. For this reason, an application 
experiences preemption when other applications are executed in the same period. 

4. Response Time Monitor 
Fig. 3 represents the response time monitor architecture that is used in the proposed RSC 
scheme. The response time is measured as the time interval between the Start time and Stop 
time. The Start time is the time instant when the input event occurs (i.e., user’s input) and the 
Stop time is the time instant when the results of the input event updates the display (i.e., 
device’s reaction). The Timer is used for recording the time information of events. When a 
user runs an interactive application, the input event occurs by touching the screen of the 
smartphone. When an input event occurs, the onTouch() function of View.OnTouchListener is 
used to obtain data, which acts as the input catcher. WindowManagerService is executed 
regularly in the Framework in order to manage the window. At this time, the Framwork’s 
InputManager is executed by InputManage.Start() in WindowManagerService. By the 
InputManager’s nativeStart function, the Android_server_InputManager_nativeStart of 
NativeInputManager based on the JAVA Native Interface (JNI) is called. The 
Android_server_InputManager_nativeStart’s start() executes the native code’s 
InputManager::start(), and here, the InputReader is executed by the run function. When an 
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input is entered, the device driver stores the value in the EventHandler’s input_event structure. 
The Android OS receives this input key value through the InputReader’s 
EventHub::getEvent(), and after comparing it with its key layout file, it updates the key value 
of the Framework. By using this function, the input catcher perceives the input event and the 
Timer records the Start time using the Event.getDownTime() function, which returns the 
current time. Then, the interactive task is executed according to the input information and the 
results are returned to the application. As the results need to be updated on the display, the 
application sends its result to the SurfaceFlingerClient using the Framework’s surface. The 
SurfaceFlingerServer collects data that is sent from the SurfaceFlingerClient and the data is 
sent to the frame buffer (FB) driver through opengl and the hardware abstraction layer (HAL). 
Finally, the FB driver displays the data on the display. When the layout state of the display is 
changed, the OnGlobalLayout() function is invoked. By using this function, the output catcher 
perceives the changes in the display and the Timer records the Stop time with the 
System.nanoTime() function which returns the current time in units of nanoseconds. 
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Fig. 3. Response time monitor implementation architecture 

5. RSC Algorithm 

5.1 Response Time Difference Estimation 
Service time is the time that is required by the processing of the CPU to run the target 
application. The service time )( fTS  of an interactive application at the CPU frequency f can 
be represented as }){()( βα += ffTS , where α/f is the CPU frequency-dependent 
workload and β is the CPU frequency-independent workload [20,21]. By using this equation, 
the service time of the AR interactive application is estimated for various CPU frequencies. 
The weight of application i with nice value in  is 025.1 ww

i

i
n

n
−= , which represents the 

weight of the running applications with nice value 0. The nice value of the AR interactive 
application is denoted as n* and its corresponding weight is 0

*
* 25.1 ww n

n
−= . The response 

time of the AR interactive application *),( nfT CPUR  is a function of both the CPU operational 
frequency fCPU and n*. *),( nfT CPUR  is influenced by the AR interactive application’s service 
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time )( fTS  and preemption rate. The preemption rate is the rate of the target AR application 
being preempted by other applications during its service time. The preemption rate of the AR 
interactive application can be derived from the ratio of the weight distribution of all processing 
tasks that share the CFS in reference to the AR interactive application’s weight 
(i.e., ( ) *'* / nSi nn www i∑ ∈∀

+ ), where S’ is the set of all tasks being processed by the CPU, 
excluding the target AR application. In addition, the preemption rate of the AR interactive 
application is affected by the CPU load of the background applications (LB). This is because 
preemption of the AR interactive application occurs when the background applications are 
simultaneously running with the AR application, and LB represents how often the background 
applications occupy the CPU resources. Therefore, the AR interactive application will 
experience a R∆  step difference in its response time if the AR interactive application’s nice 
value is changed to yn*  (from its current nice value n*) or the CPU frequency is changed to fx 
(from the smartphone’s current CPU frequency fCPU). The step difference in response time 

R∆  is represented in (1). 

 
*

'*' )()(
*

*

n

Si nBn
CPUS

n

Si nBn
xSR w

wLw
fT

w

wLw
fT

i

y

i
y ∑∑ ∈∀∈∀ +

−
+

=∆              (1) 

If the CPU were to operate at fx Hz, then the AR interactive application’s (with nice value *
yn ) 

response time (i.e., ),( *
yxR nfT ) can be obtained from the current response time *),( nfT CPUR  

added to the step difference in response time R∆  as shown in (2).  

RCPURyxR nfTnfT ∆+= *),()*,(                                     (2) 

5.2 RSC Algorithm 
In a smartphone, the number of applicable CPU frequencies and application nice values are 
limited. The set of selectable CPU frequencies are defined in F={f1, f2,…, fx,…, fmax-1, fmax} and 
the set of selectable nice values are defined in N={n1, n2, …, *

yn ,…, nmax-1, nmax}. The proposed 
RSC algorithm’s pseudo code is presented in Fig. 4.  
The algorithm first sets the CPU to its maximum frequency and the nice value of the AR 
interactive application to 0, which is the default value of CFS (step 1). Since the power 
consumption of the smartphone is reduced for lower CPU frequencies, the algorithm searches 
for the lowest CPU frequency starting from the highest frequency (fmax), where the search will 
continue in a sequence of procedures comparing the estimated response time of (2) (using the 
response time step difference (step 4) of (1) at a lower CPU frequency (step 3)) to the 
predefined response time limit LR (step 5). If a suitable lower frequency is found, then that 
frequency is used as the new CPU frequency (step 5.1) and the search for a lower frequency 
will be attempted again (step 5.2). When a lower CPU frequency cannot be found to satisfy the 

RyxR LnfT ≤),( *  condition (step 6), then based on the frequency next lower to fCPU (i.e., fx = 
fCPU-1) the response time step difference (step 6.3) will be computed and will be tested if it can 
satisfy RyxR LnfT ≤),( *  (step 6.4) using a smaller nice value (i.e., higher priority) (step 6.2). 

If a suitable nice value *
yn  at fx is found to satisfy RyxR LnfT ≤),( * , then the frequency fx is 
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used as the new CPU frequency and the nice value *
yn  is applied to the interactive application 

(step 6.4.1) and the search for a lower frequency will be attempted again (step 6.4.2). Through 
these procedures, the RSC algorithm will find the lowest frequency among F (and the required 
nice value among N) that can satisfy the response time limit LR. 
The proposed response time step control (RSC) algorithm is different compared to the other 
DVFS schemes as it monitors the response time and estimates response time variations based 
on adaptive control changes made to the CPU frequency and interactive application’s 
scheduling priority to achieve energy consumption reduction while satisfying the AR 
application’s response time requirements. 
 

BEGIN 
1. SET fCPU  fmax, fx  fmax, n*=0, *

yn  n* 
2. IF fCPU = f1 
  2.1. GOTO END 
3. SET fx  fx-1 
4. COMPUTE R∆ , ),( *

yxR nfT  

5. IF RyxR LnfT ≤),( *  
 5.1. SET fCPU  fx 
 5.2. GOTO step 2 
6. ELSE 
 6.1. IF 1

* nny =  
        6.1.1. GOTO END 
 6.2.SET *

yn   *
1−yn   

 6.3. COMPUTE R∆ , ),( *
yxR nfT  

 6.3.4. IF RyxR LnfT ≤),( *  

           6.4.1. SET fCPU  fx, n*  *
yn  

           6.4.2. GOTO step 2 
 6.5. ELSE GOTO step 6.1 
END 

Fig. 4. Pseudo code of the RSC algorithm 

6. Experimental Environment and Results 
The experiments were conducted on a Samsung Galaxy S4 LTE-A smartphone based on the 
Linux kernel 3.4.0, which uses a Qualcomm Snapdragon 800 MSM 8974 quad-core processor 
2.3 GHz CPU and Android 4.2.2 Jelly Bean operating system. The power consumption was 
measured using a Monsoon FTA22D power monitor and Agilent 66321D mobile 
communications DC source with battery emulator for the CPU loads of the background 
applications LB=0%, 10%, 20%, and 30%. The AR interactive application was selected to be 
Asphalt 8 and Facebook, which is in the high ranks of racing games and SNS in the Google 
Play Store, respectively. Input events for each interactive application occurred as driving a car 
in Asphalt 8 and scrolling pages in Facebook. For the experiments, the brightness of the 
smartphone was set to its maximum, Wi-Fi and Bluetooth were turned off, and LTE-A was 
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turned on. The experiments were conducted when the network conditions were very good (i.e., 
minimal round trip time (RTT) conditions), and therefore, the results of the experiments are 
majorly compute-bound influenced (rather than I/O-bound influenced). In addition, the 
response time limit was set to 

1RL =125 ms and 
2RL =150 ms, and the sets of selectable CPU 

frequencies and nice values are F={300, 422.4, 652.8, 729.6, 883.2, 906, 1036.8, 1190.4, 
1267.2, 1467.6, 1574.4, 1728, 1958.4, 2265.6} (all in units of MHz) and N={-20, …, 0,…, 19}, 
respectively. 
The system parameters of the smartphone and applications for implementing the RSC 
algorithm are obtainable in the following way. Linux provides CPU frequency information at 
/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq and information of the running 
applications at /proc/{pid}/stat, which include the process identification (PID) of the 
applications and the PID stat data. PID stat data includes information of the nice value, 
execution time of process on user mode (utime), and kernel mode (stime). Service time of the 
interactive application from time t1 to time t2 can be computed from 

−+= ){()(
22 ttS stimeutimefT )}(

11 tt stimeutime + /HZ in unit of ms, where HZ is a 
constant value which is 100 in Linux kernel version 3.4.0. By using these obtained values, 
RSC was implemented on the given experimental environment. 
In order to evaluate the accuracy of (1), the response time step differences were measured for 
various LB cases. In Fig. 5 and Fig. 6, the estimated response time step difference in (1) was 
compared with the experimental results. Fig. 5 and Fig. 6 show the accuracy of (1) for 
different nice values with maximum CPU frequency and for different CPU frequencies based 
on the default nice value, respectively. For all tested cases, a good match between the 
estimated response time step difference model and the actual measured values were confirmed. 
The average error of Fig. 5 and Fig. 6 are 0.103 ms and 0.698 ms respectively, and in other 
cases (for different frequencies and nice values) the errors between measured values and 
estimated values did not exceed 0.837 ms. 
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Fig. 5. Accuracy of the response time step difference of (1) with nice value variations. 
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Fig. 6. Accuracy of the response time step difference of (1) with CPU frequency variations.  

 
In order to compare the energy consumption, the energy model of [12] was considered in the 
measurement analysis. Based on repeated experiments conducted on the smartphones, the 
applications were invoked in a periodic fashion, where the energy consumption average over a 
single period is used in the comparison. The system energy totalE  is obtained from the 
combination of dynamic energy and static energy in the form of idleRDtotal PTTEE )( max −+=  
[12]. The dynamic energy DE  is a function of the CPU clock frequency and includes the 
system components, such as, CPU, main memory, and I/O devices [12,13]. The static energy 
consumption profile can be obtained from idleR PTT )( max − , where maxT  is the maximum 
response time, RT  is the current response time of the system, and idleP  is the idle time power 
consumption [12], which was measured using the Monsoon FTA22D and Agilent 66321D. 

idleP  is required for purposes such as keeping the system clock running and maintaining the 
basic circuits [13]. After experiments on RSC were conducted, the same average power level 
of RSC was used as the power level in Cinder, such that a fair response time performance 
comparison could be made. Fig. 7 presents the energy savings percentage (%) of the Cinder 
scheme [19] and the proposed RSC scheme (respectively) in reference to the energy 
consumption of the ondemand governor, measured on the same Samsung Galaxy S4 
smartphone with all equal test conditions. Since the amount of energy consumption of the 
smartphone’s display and other modules were all the same for all test scenarios, the energy 
savings percentage of Cinder and RSC presented in Fig. 7 can be considered as the savings in 
CPU energy. Fig. 8 presents the response time performance of RSC and Cinder based on 
response time limits and applications. In Fig. 7, for the case where LB is 0%, the energy is 
overused due to an excessively enlarged response time. However, energy savings are obtained 
when LB is 10%, 20%, and 30%. The results show that RSC can provide a savings in energy 
consumption up to 10.41% and 10.22% for Asphalt 8 and Facebook, respectively, compared to 
the ondemand governor. However, for the 40% and higher background load cases, the CPU 
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operates at its maximum frequency, and therefore, no energy savings were obtainable from 
RSC or Cinder. In addition, when RL  is small (e.g., 

1RR LL = ), the energy saving is less than 

when RL  is large (e.g., 
2RR LL = ). This is because, a reduced RL  requires the smartphone to 

operate at a higher frequency. In Fig. 8, when BL  is 20% and 30%, the response time of the 
smartphones using the ondemand governor and Cinder exceeds 

1RL  and 
2RL . However, when 

BL =10%, 20%, and 30%, RSC can maintain a response time below the response time limit. 
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Fig. 7. Energy savings performance of the RSC algorithm  
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Fig. 8. Response time performance of the RSC algorithm 

8. Conclusions 
In this paper, the RSC algorithm is proposed, which controls both the CPU frequency and 
priority of the AR interactive application by estimating the difference in response time. RSC 
gradually reduces the CPU frequency to the minimum CPU frequency which does not exceed 
LR. Experimental results show that RSC can save up to 10.41% of energy when compared to 
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the ondemand governor for the 30% background load case. Furthermore, by adapting the 
priority of the AR interactive application, the RSC algorithm is able to keep the response time 
of the smartphone under the desired response time limit LR even for the cases where the 
background applications have a 30% load condition. 
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