• Title/Summary/Keyword: Printing time

Search Result 565, Processing Time 0.024 seconds

A Study on Spot Color Proofing using ICC-based Color Management System (ICC 기반의 컬러 매니지먼트 시스템을 사용한 별색 교정에 관한 연구)

  • Jung, Chung-Suk;Kang, Sang-Hoon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.81-94
    • /
    • 2007
  • Recently, the trend in the printing industry includes shorter run lengths and with fast turnaround times. As new markets have made it possible to produce small quantities of high-quality color products at affordable price, the general commercial printing meets the customer's diverse demand by using spot color besides process four colors. Especially, by using spot color for printing the enterprise's logo or specific color, we can see the effect of printing is getting better. With the combination of the right software, ink, media, and device can be treated as a digital proofer for spot color printing, providing significant time and cost savings compared to conventional procedures. The objective of this study is to investigate the quality of spot color proofs printed by ink-jet and dye sublimation proofer using ICC-based color management system. An Epson Stylus Color 3000 ink-jet proofer combined with Best Color Proof XXL RIP was tested for glossy and matte paper. 3M Rainbow dye sublimation proofer was examined using 3M Rainbow controller ver. 4.1 RIP on the manufacturer recommended proofing paper. ICC profiles were generated for each device using ECI 2002 visual target and evaluated for the accuracy of process 4 color reproduction. The test charts consisting of Pantone color 1140 was selected to test the quality of spot color reproduction.

  • PDF

Computer Aided Process Planning for 3D Printing

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Computer aided process planning (CAPP) keeps an important role between the design and manufacturing engineering processes. A CAPP system is a digital link between a computer aided design (CAD) model and manufacturing instructions. CAPP have been researched and applied in manufacturing filed, however, one manufacturing area where CAPP has not been extensively researched is rapid prototyping (RP). RP is a technique for creating directly a three dimensional CAD data into a physical prototype. RP enables to build physical models automatically and to use to reduce the time for the product development cycle as well as to improve the final quality of the designed product. Three-dimensional (3D) printing is one kind of RP that creates three-dimensional objects from CAD models. The paper presents a computer aided process planning system for printing medical products. 3D printing has been used to solve complex medical problems such as surgical instruments, bioengineered products, medical implants, and surgical guides.

Development of Continuous Roll-to-Roll Screen Printing System Using a Flat Screen (평판 스크린을 이용하는 롤투롤 연속 스크린 인쇄 시스템의 개발)

  • Kim, Ga Eul;Jeon, Yong Ho;Lee, Moon Gu;Hong, Min Sung;Lee, Taik Min;Kwon, Sin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.217-223
    • /
    • 2016
  • In this research, a continuous roll-to-roll screen printing system was developed using a flat screen. It has a newly devised sliding mechanism of screen printing module, which can be controlled accurately in sync with a moving web, driven by a roll-to-roll tension control and web-guiding system. In addition, the real-time precision alignment module that consists of a vision camera and an $X-Y-{\theta}$ alignment stage was implemented. With this developed system, the feasibility of continuous printing with minimum pattern width below $60{\mu}m$ was verified, and an overlay of ${\pm}60{\mu}m$ between the laser-patterned reference mark and the printed mark on a 300-mm-wide film was achieved.

A Study on Processing of TFT Electrodes for Digital Signage Display using a Reverse Offset Printing (리버스옵셋 프린팅을 이용한 디지털 사이니지 디스플레이용 TFT 전극 형성 공정 연구)

  • Yoon, Sun Hong;Lee, Junsang;Lee, Seung Hyun;Lee, Bum-Joo;Shin, Jin-Koog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.497-504
    • /
    • 2014
  • The digital signage display is actively researched as the next generation of large FPD. To commercialize those digital signage display, the manufacturing cost must be downed with printing method instead of conventional photolithography. Here, we demonstrate a reverse offset printed TFT electrodes for the digital signage display. For the fabricated source/drain and gate electrode, we used Ag ink, silicone blanket, Clich$\acute{e}$ and reverse offset printer. We printed uniform TFT electrode patterns with narrow line width(10 ${\mu}m$ range) and thin thickness(nm range). In the end the printing source/drain and gate electrode are successfully achieved by optimization of experimental conditions such as Clich$\acute{e}$ surface treatment, ink coating process, delay time, off/set process and curing temperature. Also, we checked that the printing align accuracy was within 5 ${\mu}m$.

Application of Electrocoagulation for Printing Wastewater Treatment: From Laboratory to Pilot Scale

  • Thuy, Nguyen Thi;Hoan, Nguyen Xuan;Thanh, Dang Van;Khoa, Pham Minh;Tai, Nguyen Thanh;Hoang, Quang Huy;Huy, Nguyen Nhat
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • This study reports for the first time the application of electrocoagulation (EC) from laboratory to pilot scales for the treatment of printing wastewater, a hazardous waste whose treatment and disposal are strictly regulated. The wastewater was taken from three real printing companies with strongly varying characteristics. The treatment process was performed in the laboratory for operational optimization and then applied in the pilot scale. The weight loss of the electrode and the generation of sludge at both scales were compared. The results show that the raw wastewater should be diluted before EC treatment if its COD is higher than about 10,000 mg/L. Pilot scale removal efficiencies of COD and color were slightly lower compared to those obtained from the laboratory scale. At pilot scale, the effluent CODs removal efficiency was 81.9 - 88.9% (final concentration of 448 - 992 mg/L) and color removal efficiency was 95.8 - 98.6% (final level of 89 - 202 Pt-Co) which proved the feasibility of EC treatment as an effective pre-treatment method for printing wastewater as well as other high colored and hard-biodegradable wastewaters.

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.

Mechanical and thermal properties of 3D printing metallic materials at cryogenic temperatures

  • Jangdon Kim;Jaehwan Lee;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.24-30
    • /
    • 2024
  • Metal 3D printing is utilized in various industrial fields due to its advantages, such as fewer restrictions on production shape and reduced production time and cost. Existing research on 3D printing metal materials focused on changes in material properties depending on manufacturing conditions and was mainly conducted in a room temperature environment. In order to apply metal 3D printing products to cryogenic applications, research on the properties of materials in cryogenic environments is necessary but still insufficient. In this study, we evaluate the properties of stainless steel (STS) 316L and CuCr1Zr manufactured by Laser Powder Bed Fusion (LPBF) in a cryogenic environment. CuCr1Zr is a precipitation hardening alloy, and changes in material properties were compared by applying various heat treatment conditions. The mechanical properties of materials manufactured using the LBPF method are evaluated through tensile tests at room temperature and cryogenic temperature (77 K), and the thermal properties are evaluated by deriving the thermal conductivity of CuCr1Zr according to various heat treatment conditions. In a cryogenic environment, the mechanical strength of STS 316L and CuCr1Zr increased by about 150% compared to room temperature, and the thermal conductivity of CuCr1Zr after heat treatment increased by about 6 to 10 times compared to before heat treatment at 40 K.

Studies on Transfer Printing of Cotton and Polyester/Cotton Blended Fabrics Treated with Water Soluble Polyurethane Resin (수용성 폴리우레탄 수지 처리된 면 및 폴리에스테르/면 혼방직물의 전사날염에 관한 연구)

  • 황종호;전병익
    • Textile Coloration and Finishing
    • /
    • v.11 no.5
    • /
    • pp.13-21
    • /
    • 1999
  • In this study, selected cotton fabrics and polyester/cotton(P/C) blended fabrics are treated with a soluble polyurethane(SPU) and then, printed by heat transfer to determine the effect of SPU treatment on dye uptake of the samples. The results obtained are as follows: 1) In heat transfer, dye-uptake gets higher in Vopotion to temperature and time. The optimum printing temperature and printing time of C.I. Disperse Orange 3 and C.I. Disperse Violet 1 are $200^\circ{C}$ and 50sec. 2) Dye-uptake gets higher according to SPU concentration ; both cotton and P/C fabrics show the highest at $100g/\ell$. 3) In color, as temperature, time and SPU concentration increase, P/C fabrics show more yellowish orange color than cotton fabrics in case of C.I. Disperse Orange 3 and P/C fabrics show more reddish violet color than cotton fabrics in case of C.I. Disperse Violet 1. 4) All fastness of cotton and P/C fabrics treated with SPU are good, but color fastness to washing and water of cotton fabrics treated with SPU are not good.

  • PDF

Characterization of 3D Printed Wrist Brace with Various Tilting Angles of Re-entrant Pattern Using Thermoplastic Elastomer

  • Ye-Eun Park;Hyejin Lee;Imjoo Jung;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1074-1087
    • /
    • 2022
  • This study reports an optimization of a 3D printed wrist brace (WB) for various tilting angles (0°, 45°, 90°) of the re-entrant (RE) pattern and thickness (2 mm, 4 mm) using thermoplastic polyurethane (TPU) filaments and thermoplastic elastomer (TPE) filaments. The actual printing time, weight, Poisson's ratio, and tensile property of the manufactured samples were analyzed. The results confirmed that the actual printing time and weight increased with increasing thickness, regardless of the filament type. All tilting angles of the WB showed a negative Poisson's ratio (NPR), the largest of which appeared at 90°. The results of the tensile property analysis showed that a 90° tilting angle also had the largest value of elongation and stress. From these results, we conclude that the most suitable wrist brace is one in which the actual printing time is low, the weight is minimized to a thickness of 2 mm, and the tilting angle of the RE pattern is 90° for good shock absorption. The choice of filaments may be decided upon according to the user's preference, since the TPU is stiff and the TPE is elastic.

3D Figure Creation System Based on Content-Awareness for 3D Printing (3D 프린팅을 위한 콘텐츠 인지 기반 3D 개인 피규어 생성 시스템)

  • Lim, Seong-Jae;Hwang, Bon-Woo;Yoon, Seung-Uk;Jeon, Hye-Ryeong;Park, Chang-Joon;Choi, Jin-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.11-16
    • /
    • 2015
  • We present a system for generating 3D personalized figures. This system provides 3D figures model modification and combination functions based on the content-awareness. The integrity of the 3D model must be guaranteed at the time of slicing of the 3D model for 3D printing. In addition to this, with 3D printing, we generally have to print a hollow model in order to save money, time, and the integrity of the print. This paper proposes the automatic algorithm that creates the 3D individual figures with depth sensor and the easy UI functions for deformation, thickness adjustment, and combination of the generated 3D figures model based on the content-awareness. Our proposed method maintains the unique features of the generated 3D figures and ensures the successful 3D printing.