• Title/Summary/Keyword: Printed Circuit Heat Exchanger

Search Result 34, Processing Time 0.025 seconds

Numerical Analysis on Longitudinal Heat Conduction in Printed Circuit Heat Exchanger (인쇄기판형 열교환기의 유동방향 전도열전달에 관한 수치해석 연구)

  • Oh, Dong-Wook;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.600-604
    • /
    • 2014
  • Longitudinal heat conduction is known to be an important factor in the design of a printed circuit heat exchanger(PCHE) for cryogenic applications. Parasitic heat conduction through the heat exchanger frame needs to be considered because it is known to decrease the effectiveness of the heat exchanger. In this paper, a conjugate heat transfer problem in a simple counter-flow PCHE is analyzed by a computational fluid dynamics simulation. The effect of longitudinal conduction in a straight channel is compared with the theoretical effectiveness-NTU relationship that assumes a "thin" heat exchanger frame. The calculation results suggest that the theoretical model is valid in the present calculation conditions where NTU is < 13.

Thermal-hydraulic Design of A Printed-Circuit Steam Generator for Integral Reactor (일체형원자로 인쇄기판형 증기발생기 열수력학적 설계)

  • Kang, Han-Ok;Han, Hun Sik;Kim, Young-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • The vessel of integral reactor contains its major primary components such as the fuel and core, pumps, steam generators, and a pressurizer, so its size is proportional to the required space for the installation of each component. The steam generators take up the largest volume of internal space of reactor vessel and their volumes is substantial for the overall size of reactor vessel. Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall cost for the components and related facilities. A printed circuit heat exchanger is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. The overall heat transfer area and pressure drops are evaluated for the steam generator based on the concept of the printed circuit heat exchanger in this study. As the printed circuit heat exchanger is known to have much larger heat transfer area density per unit volume, we can expect significantly reduced steam generator compared to former shell and tube type of steam generator. For the introduction of new steam generator, two design requirements are considered: flow area ratio between primary and secondary flow paths, and secondary side parallel channel flow oscillation. The results show that the overall volume of the steam generator can be significantly reduced with printed circuit type of steam generator.

Experimental Study on the Thermal Performance of a Printed Circuit Heat Exchanger in a Cryogenic Environment (극저온 환경의 인쇄기판형 열교환기 열적성능에 대한 실험적 연구)

  • Kim, Dong Ho;Na, Sang Jun;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.426-431
    • /
    • 2015
  • The advantages of a printed circuit heat exchanger (PCHE) are the compactness and efficiency derived from its heat-transfer characteristics; furthermore, a PCHE for which a diffusion bonding method was used during production can be applied to extreme environments such as a cryogenic condition. In this study, a micro-channel PCHE fabricated by diffusion bonding was investigated in a cryogenic environment regarding its thermal performance and the pressure drop. The test rig consists of an LN2 storage tank, vaporizers, heaters, and a cold box, whereby the vaporized cryogenic nitrogen flows in hot and cold streams. The overall heat-transfer coefficients were evaluated and compared with traditional correlations. Lastly, we suggested the modified heat-transfer correlations for a PCHE in a cryogenic condition.

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.

A Study on Thermal Design of Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen (극저온 고압액체수소 공급용 인쇄기판 열교환기의 열설계에 관한 연구)

  • SOHN, SANGHO;CHOI, BYUNG-IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.347-355
    • /
    • 2021
  • This paper is a study on the thermal design of printed circuit heat exchanger (PCHE) to supply cryogenic high pressure liquid hydrogen stored from hydrogen liquefaction process by using computational fluid dynamics (CFD). This PCHE should be thermally designed to raise the temperature of cryogenic liquid hydrogen to a desired temperature and also to be anti-icing to avoid any local freezing in hot channel. This research presents the effect of inlet velocity and inlet temperature of hydrogen, and the effect of flow configurations of co/counter-flow on thermal design of PCHE heat exchanger based on various CFD simulation analysis.

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

Structural Design for Key Dimensions of Printed Circuit Heat Exchanger (인쇄기판형열교환기 핵심치수 구조설계)

  • Kim, Yong Wan;Kang, Ji Ho;Sah, In Jin;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.24-31
    • /
    • 2018
  • The mechanical design procedure is studied for the PCHE(printed circuit heat exchanger) with electrochemical etched flow channels. The effective heat transfer plates of PCHE are assembled by diffusion bonding to make a module. PCHE is widely used for industrial applications due to its compactness, cost efficiency, and serviceability at high pressure and/or temperature conditions. The limitations and technical barriers of PCHE are investigated for application to nuclear components. Rules for design and fabrication of PCHE are specified in ASME Section VIII but not in ASME Section III of nuclear components. Therefore, the calculation procedure of key dimensions of PCHE is defined based on ASME section VIII. The effective heat transfer region of PCHE is defined by several key dimensions such as the flow channel radius, edge width, wall thickness, and ridge width. The mechanical design procedure of key dimensions was incorporated into a program for easy use in the PCHE design. The effect of assumptions used in the key dimension calculation on stress values is numerically investigated. A comparative analysis is done by comparing finite element analysis results for the semi-circular flow channels with the formula based sizing calculation assuming rectangular cross sections.

Multi-objective optimization of printed circuit heat exchanger with airfoil fins based on the improved PSO-BP neural network and the NSGA-II algorithm

  • Jiabing Wang;Linlang Zeng;Kun Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2125-2138
    • /
    • 2023
  • The printed circuit heat exchanger (PCHE) with airfoil fins has the benefits of high compactness, high efficiency and superior heat transfer performance. A novel multi-objective optimization approach is presented to design the airfoil fin PCHE in this paper. Three optimization design variables (the vertical number, the horizontal number and the staggered number) are obtained by means of dimensionless airfoil fin arrangement parameters. And the optimization objective is to maximize the Nusselt number (Nu) and minimize the Fanning friction factor (f). Firstly, in order to investigate the impact of design variables on the thermal-hydraulic performance, a parametric study via the design of experiments is proposed. Subsequently, the relationships between three optimization design variables and two objective functions (Nu and f) are characterized by an improved particle swarm optimization-backpropagation artificial neural network. Finally, a multi-objective optimization is used to construct the Pareto optimal front, in which the non-dominated sorting genetic algorithm II is used. The comprehensive performance is found to be the best when the airfoil fins are completely staggered arrangement. And the best compromise solution based on the TOPSIS method is identified as the optimal solution, which can achieve the requirement of high heat transfer performance and low flow resistance.

Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers (직관 마이크로채널 PCHE의 열전달특성 및 압력강하)

  • Kim, Yoon-Ho;Seo, Jung-Eun;Choi, Young-Jong;Lee, Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

Preliminary analysis and design of the heat exchangers for the Molten Salt Fast Reactor

  • Ronco, Andrea Di;Cammi, Antonio;Lorenzi, Stefano
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • Despite the recent growth of interest in molten salt reactor technology and the crucial role which heat transfer plays in the design of power reactors, specific studies on the design of heat exchangers for the Molten Salt Fast Reactor have not yet been performed. In this work we deliver a preliminary but quantitative analysis of the intermediate heat exchangers, based on reference design data from the SAMOFAR H2020-Euratom project. Two different promising reference technologies are selected for study thanks to their compactness features, the Printed Circuit and the Helical Coil heat exchangers. We present preliminary design results for each technology, based on simplified design tools. Results highlight the limiting effects of the compactness constraints imposed on the fuel salt inventory and the allowed size. Large pressure drops on both flow sides are to be expected, with negative consequences on pumping power and natural circulation capabilities. The small size required for the flow channels also represents possible fabrication issues and safety concerns regarding channel blockage.