Acknowledgement
본 연구는 2021년 한국기계연구원 기본사업인 '액체수소 공급시스템 핵심 기자재 개발(NK231B)'의 지원으로 연구한 결과물입니다.
References
- Q. Wilhelmsen, D. Berstad, A. Aasen, and P. Neksa, "Reducing the exergy destruction in the cryogenic heat exchangers of hydro liquefaction processes", Int. J. hydrogen energy, Vol. 43, No. 10, 2018, pp.5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.
- T. Kim, B. I. Choi, Y. S. Han, and K. H Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pulot platn with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.
- J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E.W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, doi: https://doi.org/10.1063/1.3160306.
- P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion durting liquefaction", Chem. Eng. Technol, Vol. 42, No. 3 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.
- B. Sun, D. Wadnerkar, R. P. Utikar, M. Tade, N. Kavanagh, S. Faka, G. M. Evans, and V. K. Pareek, "Modeling of cryogenic liquefied natural gas ambient air vaporizers", Ind. Eng. Chem. Res, Vol. 57, No. 28, 2018, pp. 9281-9291, doi: https://doi.org/10.1021/acs.iecr.8b01226.
- M. Ichard, Q. R. Hansen, P. Middha, and D. Willoughby, "CFD computations of liquid hydrogen releases", Int. J. hyrogen energy, Vol 37, No. 22, 2012, pp. 17380-17389, doi: https://doi.org/10.1016/j.ijhydene.2012.05.145.
- D. C. Lee, H. Afrianto, H. S. Chung, and H. M. Jeong, "Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship", The Korean Society of Marine Eng, Vol. 37, No. 1, 2013, pp. 22-28, doi: https://doi.org/10.5916/jkosme.2013.37.1.22.
- F. Huerta and V. Vesovic, "CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks", Int. J. heat and mass transfer, Vol. 176, 2021, pp. 121419, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121419.
- S. Beak, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 7-9, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.
- D. Popov, K. Fikiin, B. Stankov, G. Alvarez, M. Y. Idrissi, A. Damas, J. Evans, and T. Brown, "Cryogenic heat exchangers for process cooling and renewable energy storage: a review", App. Thermal Eng, Vol. 153, 2019, pp. 275-290, doi: https://doi.org/10.1016/j.applthermaleng.2019.02.106.
- "Standard test method for freezing point of aqueous engine coolants", ASTM D1177-17, 2017, Retrieved from https://www.astm.org/Standards/D1177.htm.
- "ANSYS fluent theory guide", ANSYS, 2013.
- "Fuelingprotocols for light duty gaseous hydrogen surface vehicles J2601_202005", SAE MOBILUS, 2020, Retrieved from https://www.sae.org/standards/content/j2601_202005/.