• Title/Summary/Keyword: Primary Auxiliary Circuit

Search Result 27, Processing Time 0.035 seconds

A Novel Soft-Switching Full-Bridge PWM Converter with an Energy Recovery Circuit

  • Lee, Dong-Young;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.809-821
    • /
    • 2009
  • This paper proposes a new phase-shift full-bridge DC-DC converter by applying energy recovery circuits to a conventional full-bridge DC-DC converter in plasma display panel applications. The converter can achieve soft-switching in main-switches by an extra auxiliary resonant network even with the wide operating condition of both output load and input voltage. The un-coupled design guidelines to the main bridge-leg component parameters for soft-switching operation contribute to conduction loss reduction in the transformer primary side leading to efficiency improvement. The auxiliary switches in the resonant network also operate in zero-current switching. This paper analyzes the operation modes of the proposed scheme and presents the key design guidelines through steady state analysis. Also, the paper verifies the validity of the circuits by hardware experiments with a 1kW DC/DC converter prototype.

Novel ZVZCS Full-bridge PWM converter using a coupled output inductor (출력단 결합인덕터를 이용한 영전압 영전류 스위칭 플브릿지 PWM 컨버터)

  • Choi, Hang-Seok;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1270-1273
    • /
    • 2000
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter is proposed. The new converter improves the drawbacks of the previously proposed ZVZCS FB PWM converters [1-5]. A simple auxiliary circuit with neither lossy components nor active switches achieves ZVZCS of the primary switches. Since the proposed converter has many advantages such as simple auxiliary circuit, high efficiency, and low voltage stress of the rectifier diode, it is very attractive for the high power applications. The principles of operation and design considerations are presented. The experimental verifications from 2.5kW prototype converter operating at 70kHz are presented.

  • PDF

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

A Study on the ZVZCS Three Level DC/DC Converter without Primary Freewheeling Diodes (1차측 환류 다이오드를 제거한 ZVZCS Three Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kwon, Soon-Do;Kim, Pil-Soo;Gye, Sang-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.66-73
    • /
    • 2002
  • This paper presents ZVZCS(Zero-Voltage and Zero-Current Switching) Three Level DC/DC Converter without primary freewheeling diodes. The new converter presented in this paper used a phase shirt control with a flying capacitor in the primary side to achieve ZVS for the outer switches. A secondary anxiliary circuit which consists of one small capacitor, two small diodes and one coupled inductor, is added in the secondary to provide ZVZCS conditions to primary switches, ZVS for outer switches and ZCS for inner switches. Many advantages include simple secondary auxiliary circuit topology, high efficiency, and low cost make the new converter attractive for high power applications. Also the circulating current flows through the circuit so that it causes the needless coduction loss to be occurred in the devices and the transformer of the circuit The new converter has no primary auxiliary diodes for freewheeling current. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 1[㎾] 50[KHz]IGBT based experimental circuit.

New Isolated Zero Voltage Switching PWM Boost Converter (새로운 절연된 영전압 스위칭 PWM 부스트 컨버터)

  • Cho, Eun-Jin;Moon, Gun-Woo;Jung, Young-Suk;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.535-538
    • /
    • 1994
  • In this paper, an isolated ZVS-PWM boost converter is proposed for single stage line conversion. For power factor correction, we used the half bridge topology at the primary side of isolation transformer permitting switching devices to operate under ZVS by using circuit parastics and operating at a fixed duty ratio near 50%. Thus the relatively continuous input current distortion and small size input filter are also achievable. The ZVS-PWM boost operation of the proposed converter can be achieved by using the boost inductor $L_f$, main switch $Q_3$, and simple auxiliary circuit at the secondary side of isolation transformer. The secondary side circuit differ from a conventional PWM boost converter by introduction a simple auxiliary circuit. The auxiliary circuit is actived only during a short switching transition time to create the ZVS condition for the main switch as that of the ZVT-PWM boost converter. With a single stage, it is possible to achieve a sinusoidal line current at unity power factor as well as the isolated 48V DC output. Comparing to the two stage schemes, overall effiency of the proposed converter is highly improved due to the effective ZVS of all devices as well as single stage power conversion. Thus, it can be operated at high switching frequency allowing use of small size input filter. Minimum voltage and current stress make it high power application possible.

  • PDF

New Double-Connected Multi-Step Inverter for High Power Motor Drive Applications (대용량 모터드라이브 적용을 위한 새로운 이중접속방식의 멀티스텝 인버터)

  • Yang, Seung-Uk;Choe, Gyu-Ha;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.209-215
    • /
    • 2006
  • Now, in this paper, going to present you with an Idea related to a new inverter of multi-step voltage source, that Is, the double-connected 12-step inverter with an auxiliary circuit. It possibly can be 24-step inverter with 3-phase voltage source which will enable us make full application even to medium and high power-level Motor drive, UPS, STATCOM, SVC, etc. in which the PWM method could not be employed. 24-step operation can be obtained from the link between the existing 12-step inverter and the additional auxiliary circuit in which the transformer of auxiliary circuit generates ripple voltage delivered to the inverter. Through a lot of experiments and simulations, (from which the validity of this scheme is confirmed,) we came to the conclusion that the increase of the primary winding number on transformer by 2N(N=1,2,3....) leads to the 12M-step(M=2,3,4...) inverter. The validity of the proposed scheme is confirmed by the simulated and experimental results.

A Study on PFC of Active Clamp ZVS Flyback Converter

  • Choi Tae-Young;Ahn Jeong-Joon;Ryu Dong-Kyun;Lee Woo-Suk;Won Chung-Yuen;Kim Soo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.611-616
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flyback converter by adding two methods PFC (power Factor Correction) circuit - two-stage and single-stage. The addition of active clamp circuit also provides a mechanism for achieving ZVS of both the primary and auxiliary switches. ZVS also limits the turn off di/dt of the output rectifier, reducing rectifier-switching loss and switching noise, due to diode reverse recovery. As a result, the proposed converters have characteristics of the reduced switching noise and high efficiency in comparison to conventional flyback converter. The simulation and experimental results show that the proposed converter improve the input PF of 300W ZVS flyback converter by adding single-stage, two-stage PFC circuit.

  • PDF

Primary side control of Flyback converter using sawtooth wave (톱니파를 이용한 플라이백 컨버터의 일차 측 제어)

  • Nam, Sang-Guk;Kim, Ki-Hyun;Kim, Min-Sung;Seo, Kil-Soo;Kim, Nam-Kyun;Song, Han-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.932-933
    • /
    • 2015
  • This paper presents methods to achieve and control accurate output voltage. PSR removed secondary output voltage sensing circuit, therefore standby power loss can be decreased. When sensing the auxiliary winding voltage, sensing must be done at accurate branch which has $V_O$ information. For this reason this paper presents the PSR sensing technique using sawtooth wave and peak detector. Circuit verification carried out with Spectre in Cadence corporation and Manga/Hynix $0.35{\mu}m$ 700V process.

  • PDF

Active Controlled Primary Current Cutting-Off ZVZCS PWM Three-Level DC-DC Converter

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.375-382
    • /
    • 2018
  • A novel active controlled primary current cutting-off zero-voltage and zero-current switching (ZVZCS) PWM three-level dc-dc converter (TLC) is proposed in this paper. The proposed converter has some attractive advantages. The OFF voltage on the primary switches is only Vin/2 due to the series connected structure. The leading-leg switches can obtain zero-voltage switching (ZVS), and the lagging-leg switches can achieve zero-current switching (ZCS) in a wide load range. Two MOSFETs, referred to as cutting-off MOSFETs, with an ultra-low on-state resistance are used as active controlled primary current cutting-off components, and the added conduction loss can be neglected. The added MOSFETs are switched ON and OFF with ZCS that is irrelevant to the load current. Thus, the auxiliary switching loss can be significantly minimized. In addition, these MOSFETs are not series connected in the circuit loop of the dc input bus bar and the primary switches, which results in a low parasitic inductance. The operation principle and some relevant analyses are provided, and a 6-kW laboratory prototype is built to verify the proposed converter.

Novel Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with a Low Output Current Ripple (낮은 인덕터 맥동전류를 가지는 새로운 영전압 영전류 스위칭 풀 브릿지 DC/DC 컨버터)

  • Baek, J.W.;Cho, J.G.;Yoo, D.W.;Song, D.I.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2204-2206
    • /
    • 1997
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with a low output current ripple is proposed. The proposed circuit improve the demerits of the previously presented ZVBCS-FB-PWM converters[5-8] such as use of lossy components or additional active switches. A simple auxiliary circuit which includes neither lossy components nor active switches provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches. In addition, this proposed circuit reduces a output current ripple considerably. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive far high power (> 1kW) applications.

  • PDF