DOI QR코드

DOI QR Code

Active Controlled Primary Current Cutting-Off ZVZCS PWM Three-Level DC-DC Converter

  • Shi, Yong (College of Electrical & Information Engineering, Shaanxi University of Science & Technology)
  • Received : 2017.03.30
  • Accepted : 2017.11.04
  • Published : 2018.03.20

Abstract

A novel active controlled primary current cutting-off zero-voltage and zero-current switching (ZVZCS) PWM three-level dc-dc converter (TLC) is proposed in this paper. The proposed converter has some attractive advantages. The OFF voltage on the primary switches is only Vin/2 due to the series connected structure. The leading-leg switches can obtain zero-voltage switching (ZVS), and the lagging-leg switches can achieve zero-current switching (ZCS) in a wide load range. Two MOSFETs, referred to as cutting-off MOSFETs, with an ultra-low on-state resistance are used as active controlled primary current cutting-off components, and the added conduction loss can be neglected. The added MOSFETs are switched ON and OFF with ZCS that is irrelevant to the load current. Thus, the auxiliary switching loss can be significantly minimized. In addition, these MOSFETs are not series connected in the circuit loop of the dc input bus bar and the primary switches, which results in a low parasitic inductance. The operation principle and some relevant analyses are provided, and a 6-kW laboratory prototype is built to verify the proposed converter.

Keywords

E1PWAX_2018_v18n2_375_f0001.png 이미지

Fig. 1. Active controlled primary current cutting-off ZVZCSPWM TLC.

E1PWAX_2018_v18n2_375_f0002.png 이미지

Fig. 2. Basic operation principle.

E1PWAX_2018_v18n2_375_f0003.png 이미지

Fig. 3. Operation stages of the proposed converter: (a) stage 1; (b) stage 2; (c) stage 3; (d) stage 4; (e) stage 5; (f) stage 6; (g) stage 7.

E1PWAX_2018_v18n2_375_f0004.png 이미지

Fig. 4. Conventional ZVZCS TLC. (a) Diode cut-off. (b) Secondaryside active reset.

E1PWAX_2018_v18n2_375_f0005.png 이미지

Fig. 5. Layouts of the IGBTs and lamination bus bars for: (a)proposed converter and Fig. 4(b), (b) Fig. 4(a).

E1PWAX_2018_v18n2_375_f0006.png 이미지

Fig. 6. Control signals of S1, S3, S4 and S5.

E1PWAX_2018_v18n2_375_f0007.png 이미지

Fig. 7. Waveform of vBC.

E1PWAX_2018_v18n2_375_f0008.png 이미지

Fig. 8. Waveform of iP.

E1PWAX_2018_v18n2_375_f0009.png 이미지

Fig. 9. Waveform of vCBL.

E1PWAX_2018_v18n2_375_f0010.png 이미지

Fig. 10. Waveforms of vS5 and vS6.

E1PWAX_2018_v18n2_375_f0011.png 이미지

Fig. 11. Waveform of vDo1.

E1PWAX_2018_v18n2_375_f0012.png 이미지

Fig. 12. Waveform of iLo.

E1PWAX_2018_v18n2_375_f0013.png 이미지

Fig. 13. ZCS of S5 and S6.

E1PWAX_2018_v18n2_375_f0014.png 이미지

Fig. 14. ZCS of S3.

E1PWAX_2018_v18n2_375_f0015.png 이미지

Fig. 15. ZVS of S1.

E1PWAX_2018_v18n2_375_f0016.png 이미지

Fig. 16. Waveforms of vS4 and iS4.

E1PWAX_2018_v18n2_375_f0017.png 이미지

Fig. 17. Waveforms of vS2 and iS2.

E1PWAX_2018_v18n2_375_f0018.png 이미지

Fig. 18. Efficiency comparison results.

E1PWAX_2018_v18n2_375_f0019.png 이미지

Fig. 19. Main power loss distribution with a 400A load current.

E1PWAX_2018_v18n2_375_f0020.png 이미지

Fig. 20. Photo of the prototype.

TABLE I ADDED COMPONENTS, ADDED COST AND A PERFORMANCE COMPARISON

E1PWAX_2018_v18n2_375_t0001.png 이미지

Table II MAIN PARAMETERS OF THE PROTOTYPE

E1PWAX_2018_v18n2_375_t0002.png 이미지

References

  1. P. M. Barbosa and F. C. Lee, "Design aspects of parallel three-phase DCM boost rectifiers," in IEEE PESC Rec., pp. 331-336, 1999.
  2. F. Blaabjerg, Z. Chen, and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1184-1194, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833453
  3. L. M. Tolbert and F. Z. Peng, "Multilevel converters as a utility interface for renewable energy systems," in Proc. 2000 Power Eng. Soc. Summer Meeting, Vol. 2, Pt. 2, pp. 1271-1274, 2000.
  4. D. Li, F. Gao, P. C. Loh, M. Zhu, and F. Blaabjerg, "Hybrid-source impedance networks: layouts and generalized cascading concepts," IEEE Trans. Power Electron., Vol. 26, No. 7, pp. 2028-2040, Jul. 2011. https://doi.org/10.1109/TPEL.2010.2101617
  5. X. Ruan, B. Li, Q. Chen, S. Tan, and C. K. Tse, "Fundamental considerations of three-level DC-DC converters: Topologies, analyses, and control," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 11, pp. 3733-3743, Dec. 2008. https://doi.org/10.1109/TCSI.2008.927218
  6. J. R. Pinheiro and I. Barbi, "The three-level ZVS PWM converter - A new concept in high-voltage DC-to-DC conversion," in Proc. IEEE IECON, pp. 173-178, 1992.
  7. I. Barbi, R. Gules, R. Redl, and N. O. Sokal, "DC/DC converter: Four switches Vpk= Vin/2, Capacitive turn-off snubbing, ZV turn-on," IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 918-927, Jul. 2004. https://doi.org/10.1109/TPEL.2004.830092
  8. E. Deschamps and I. Barbi, "A comparison among three-level ZVS-PWM isolated DC-to-DC converters," in Proc. IEEE IECON, pp. 1024-1029, 1998.
  9. J. A. Carr, B. Rowden, and J. C. Balda, "A three-level full-bridge zero-voltage zero-current switching converter with a simplified switching scheme," IEEE Trans. Power Electron., Vol. 24, No. 2, pp. 329-338, Feb. 2009. https://doi.org/10.1109/TPEL.2008.2007211
  10. F. Canales, P. M. Barbosa, and F. C. Lee, "A zero-voltage and zero current-switching three level DC/DC converter," IEEE Trans. Power Electron., Vol. 17, No. 6, pp. 898-904, Nov. 2002. https://doi.org/10.1109/TPEL.2002.805609
  11. W. Li, P. Li, H. Yang, and X. He, "Three-level forward-flyback phase-shift ZVS converter with integrated series-connected coupled inductor," IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 2846-2856, Jun. 2012. https://doi.org/10.1109/TPEL.2011.2177478
  12. E. Agostini and I. Barbi, "Three-phase three-level PWM DC-DC converter," IEEE Trans. Power Electron., Vol. 26, No. 7, pp. 1847-1856, Jul. 2011. https://doi.org/10.1109/TPEL.2010.2090904
  13. X. Ruan, L. Zhou, and Y. Yan, "Soft-switching PWM three-level converters," IEEE Trans. Power Electron., Vol. 16, No. 5, pp. 612-622, Sep. 2001. https://doi.org/10.1109/63.949494
  14. H. Wang, H. S.-H. Chung, and A. Ioinovici, "A new concept of high-voltage DC-DC conversion using asymmetric voltage distribution on the switch pairs and hybrid ZVS-ZCS scheme," IEEE Trans. Power Electron., Vol. 27, No. 5, pp. 2242-2259, May 2012. https://doi.org/10.1109/TPEL.2011.2173588
  15. D.V. Ghodke, K. Chatterjee, and B. G. Fernandes, "Modified soft-switched three-phase three-level DC-DC converter for high-power applications having extended duty cycle range," IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp. 3362-3372, Sep. 2012. https://doi.org/10.1109/TIE.2011.2171169
  16. H. Sheng, F. Wang, and C. W. Tipton, "A fault detection and protection scheme for three-level DC-DC converters based on monitoring flying capacitor voltage," IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 685-697, Feb. 2012. https://doi.org/10.1109/TPEL.2011.2161333
  17. D.-Y. Kim, J.-K. Kim, and G.-W Moon, "A three-level converter with reduced filter size using two transformers and flying capacitors," IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 46-53, Jan. 2013. https://doi.org/10.1109/TPEL.2012.2191798
  18. Y. Shi and X. Yang, "Soft switching PWM cascaded three-level combined DC-DC converters with reduced filter size and wide ZVS load range," IEEE Trans. Power Electron., Vol. 30, No. 12, pp. 6604-6616, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2391285
  19. Y. Shi, "Full ZVS load range diode clamped three-level dc-dc converter with secondary modulation," J. Power Electron., Vol.16, No. 1, pp. 93-101, Jan. 2016. https://doi.org/10.6113/JPE.2016.16.1.93