• 제목/요약/키워드: Primary Air

검색결과 871건 처리시간 0.023초

아티스트의 난치병 발병 저감을 위한 창작 환경 개선방안 연구 (A Study on the Improvement of Creative Environment to Reduce the Incurable Disease of Artists)

  • 조명계
    • 교육시설 논문지
    • /
    • 제26권3호
    • /
    • pp.3-13
    • /
    • 2019
  • Purpose: The human body is a chemical laboratory. Artists are exposed to a variety of chemicals in art studio space and the art materials used in the creation contain toxic ingredients, exposing them to a variety of incurable diseases, including cancer. It aims to analyze the problems of the studio space environment and the risks of art materials, which are fundamental causes of the outbreak of incurable diseases, and to derive the direction of specific practices that can reduce the occurrence of incurable diseases by artists. Method: The harmfulness of an artist's creative space is the cause of a disease outbreak, and two primary factors cause it. One is the environmental hazards caused by the use of tools, air pollution, and chemical hazards caused by art materials in the architectural space environment of the studio. Necessary measures are put forward to control disease outbreaks by identifying the status and cause of intractable diseases caused by studies. Result: The plan is urgent for the establishment of safety rules and regular pre-trainthese two factors and analyzing the results of prior research and implementation investigationing, the legal provisions of studio architecture design and the introduction of labelling rules to control the distribution of harmful art materials.

인간-기계 인터페이스 및 증강현실 기술의 항공운항 분야 적용 (Application of Human Machine Interface and Augmented Reality Technology to Flight Operation)

  • 박형욱;정준;장조원;주성현;황영하
    • 한국항공운항학회지
    • /
    • 제27권2호
    • /
    • pp.54-69
    • /
    • 2019
  • The primary objective of this paper is to introduce the application of Human-Machine Interface (HMI) and Augmented Reality (AR) technologies in flight operations. These include: self-check-in, baggage handling, airport security and surveillance, airport operations monitoring, In-Flight Entertainment and Connectivity (IFEC), cockpit design, and cabin crew support. This paper investigates the application status and development trends of HMI and AR technologies for airports and aircraft. These technologies can provide more efficient in-flight passenger service and experience by using AR devices. This paper also discusses the developments such as; the Integrated Control Application (ICA) for the IFEC interface, AR flight simulation training program using the fixed-based simulator, and the AR aircraft cabin interior concept test program. These applications present how HMI and AR techniques can be utilized in actual flight operations. The developed programs in this paper can be applied to their purpose within aircraft interiors and services to enhance efficiency, comfort, and experience.

체결부 재료에 따른 FCEV 연료파이프 메탈 씰링부의 기밀성 분석 (Analysis of Hydrogen-tightness on the Metal Sealing of a Fuel Pipe for FCEV according to Material Change of the Fitting Body)

  • 이정민;한은수;전문수;이형욱
    • 소성∙가공
    • /
    • 제28권5호
    • /
    • pp.266-274
    • /
    • 2019
  • Metal sealing is used to connecting the parts between valves and fuel pipes for a FCEV which utilizes hydrogen gas of 700 bar. Instead of general carbon steel, stainless steel is the primary material used to manufacture fuel pipes due to hydrogen embrittlement. The shape of deformation between metals is an important factor on the air-tightness of the metal to metal contact. Since the stainless steel pipe is hardened using the plastic forming during the tip shaping stage, this work hardening could have an effect on the deformed shape and characteristics of contact surfaces in fastening of pipes. In this paper, the deformation history of the pipe model was considered in order to analyze the hydrogen-tightness on the metal sealing part. The contact distance and the forward displacement for fastening were compared using experimental results and the simulation results. The simulation of the effect of material change on the fitting body demonstrated that the hardness or the strength of the formed tip of the pipe was designed to a proper valued level since the characteristics of the contact surface was exhibited better when the strength of the pipe was lower than that of the fitting body.

Pilot 순환유동층 연소장치에서의 목재펠릿과 아역청탄 혼소 특성 (Characteristics of Co-Combustion of Wood Pellet with Sub-Bituminus Coal in A Pilot CFB Combustor)

  • 김동원;박경일;이종민;배용채
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.436-447
    • /
    • 2019
  • The circulating fluidized bed boiler has an advantage that can burn a variety of fuels from low-grade fuel to coal. In this study, for the design of a circulating fluidized bed boiler using wood pellets, a circulating fluidized bed combustion test device using no external heater was manufactured and used. According to the increase of co-combustion rate with wood pellet, combustion fraction and heat flux by combustor height were measured and pollutant emission characteristics were analyzed. In terms of combustibility, the effect on primary and secondary air ratio were also studied. In addition, as a result of analysis of the effect of corrosive nanoparticles on the combustion of coal with wood pellets, it was confirmed that coal is mostly composed of Ca and S, whereas wood pellets are mostly composed of K, Cl, and Na.

국내 세탁행동의 지속가능성에 관한 연구 -유럽과의 비교를 중심으로- (A Study on Sustainable Laundry Behavior -Comparison between Korean and European Consumers-)

  • 위지원;이윤정;정혜정
    • 한국의류학회지
    • /
    • 제45권3호
    • /
    • pp.525-545
    • /
    • 2021
  • The purpose of this study was to assess the sustainability of laundry practices among Korean households in comparison with European households. A total of 329 responses were collected through an online survey and analyzed using SPSS. Detergent dosing, use of fabric softener, prewashing, rinsing, washing programs, and washing temperatures of Korean households were not optimal for sustainability. Only 11.2% of respondents followed dosage instructions while the majority based on load size. Use of fabric enhancer, prewashing, and rinsing were frequent. Cotton 40℃ was the most frequently used program (81.5%) while eco and cold wash programs were among the least (1.5%). In terms of laundry sorting, load size, drying, and ironing, more sustainable actions were reported. Laundry was often sorted by color, machines were commonly filled, and clothes tended to be air-dried and not excessively ironed. Gender was the primary socio-demographic factor denoting sustainable habits, with males being more attentive to instructions and care labels than females. European households, however, were more sustainable in all areas except for frequent ironing, and education level and employment status were significant factors affecting sustainable practices.

DAB 컨버터용 전력 변압기의 누설 인덕턴스를 포함한 내부 전력 손실 분석에 관한 연구 (A Study on the Analysis of Internal Power Loss Including Leakage Inductance of Power Transformer for DAB Converter)

  • 유정상;안태영;길용만
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.95-100
    • /
    • 2022
  • In this paper, a power loss analysis technique of a high-frequency transformer of a bidirectional DAB (Dual Active Bridge) converter is reported. To miniaturize the transformer of the dual active bridge converter, a resonant inductor was designed with an air gap included low-coupled rate state core to combine leakage inductor with the resonant inductor which is required for soft-switching. In this paper, leakage inductance and magnetizing inductance, core material, type of winding and winding method are included in the dual active bridge transformer loss analysis process to enable optimal design at the initial design stage. Transformer loss analysis for dual active bridge with a switching frequency of 200 kHz and maximum output of 5 kW was executed, and elements necessary for design based on the number of turns on the primary side were graphed while maintaining the transformer turns ratio and window area. In particular, it was possible to determine the optimal number of turns and thickness of the transformer, and ultimately, the total loss of the transformer could be estimated.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

A Study and Analysis of COVID-19 Diagnosis and Approach of Deep Learning

  • R, Mangai Begum
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.149-158
    • /
    • 2022
  • The pandemic of Covid-19 (Coronavirus Disease 19) has devastated the world, affected millions of people, and disrupted the world economy. The cause of the Covid19 epidemic has been identified as a new variant known as Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV2). It motives irritation of a small air sac referred to as the alveoli. The alveoli make up most of the tissue in the lungs and fill the sac with mucus. Most human beings with Covid19 usually do no longer improve pneumonia. However, chest x-rays of seriously unwell sufferers can be a useful device for medical doctors in diagnosing Covid19-both CT and X-ray exhibit usual patterns of frosted glass (GGO) and consolidation. The introduction of deep getting to know and brand new imaging helps radiologists and medical practitioners discover these unnatural patterns and pick out Covid19-infected chest x-rays. This venture makes use of a new deep studying structure proposed to diagnose Covid19 by the use of chest X-rays. The suggested model in this work aims to predict and forecast the patients at risk and identify the primary COVID-19 risk variables

Evaluation on Large-scale Biowaste Process: Spent Coffee Ground Along with Real Option Approach

  • Junho Cha;Sujin Eom;Subin Lee;Changwon Lee;Soonho Hwangbo
    • 청정기술
    • /
    • 제29권1호
    • /
    • pp.59-70
    • /
    • 2023
  • This study aims to introduce a biowaste processing system that uses spent coffee grounds and implement a real options method to evaluate the proposed process. Energy systems based on eco-friendly fuels lack sufficient data, and thus along with conventional approaches, they lack the techno-economic assessment required for great input qualities. On the other hand, real options analysis can estimate the different costs of options, such as continuing or abandoning a project, by considering uncertainties, which can lead to better decision-making. This study investigated the feasibility of a biowaste processing method using spent coffee grounds to produce biofuel and considered three different valuation models, which were the net present value using discounted cash flow, the Black-Scholes and binomial models. The suggested biowaste processing system consumes 200 kg/h of spent coffee grounds. The system utilizes a tilted-slide pyrolysis reactor integrated with a heat exchanger to warm the air, a combustor to generate a primary heat source, and a series of condensers to harness the biofuel. The result of the net present value is South Korean Won (KRW) -225 million, the result of the binomial model is KRW 172 million, and the result of the Black-Scholes model is KRW 1,301 million. These results reveal that a spent coffee ground-related biowaste processing system is worthy of investment from a real options valuation perspective.

Human Pluripotent Stem Cell-Derived Alveolar Epithelial Cells as a Tool to Assess Cytotoxicity of Particulate Matter and Cigarette Smoke Extract

  • Jung-Hyun Kim;Minje Kang;Ji-Hye Jung;Seung-Joon Lee;Seok-Ho Hong
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.155-163
    • /
    • 2022
  • Human pluripotent stem cells (hPSCs) can give rise to a vast array of differentiated derivatives, which have gained great attention in the field of in vitro toxicity evaluation. We have previously demonstrated that hPSC-derived alveolar epithelial cells (AECs) are phenotypically and functionally similar to primary AECs and could be more biologically relevant alternatives for assessing the potential toxic materials including in fine dust and cigarette smoking. Therefore, in this study, we employed hPSC-AECs to evaluate their responses to exposure of various concentrations of diesel particulate matter (dPM), cigarette smoke extract (CSE) and nicotine for 48 hrs in terms of cell death, inflammation, and oxidative stress. We found that all of these toxic materials significantly upregulated the transcription of pro-inflammatory cytokines such as IL-1α, IL-β, IL-6, and TNF-α. Furthermore, the exposure of dPM (100 ㎍/mL) strongly induced upregulation of genes related with cell death, inflammation, and oxidative stress compared with other concentrations of CSE and nicotine. These results suggest that hPSC-AECs could be a robust in vitro platform to evaluate pulmotoxicity of various air pollutants and harmful chemicals.