• 제목/요약/키워드: Primal-Dual Algorithm

검색결과 53건 처리시간 0.023초

Karmarkar's & Primal-Dual 내부점 알고리즘의 해의 수렴과정의 안정성에 관한 고찰 (A Study of stability for solution′s convergence in Karmarkar's & Primal-Dual Interior Algorithm)

  • 박재현
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.93-100
    • /
    • 1998
  • The researches of Linear Programming are Khachiyan Method, which uses Ellipsoid Method, and Karmarkar, Affine, Path-Following and Interior Point Method which have Polynomial-Time complexity. In this study, Karmarkar Method is more quickly solved as 50 times then Simplex Method for optimal solution. but some special problem is not solved by Karmarkar Method. As a result, the algorithm by APL Language is proved time efficiency and optimal solution in the Primal-Dual interior point algorithm. Furthermore Karmarkar Method and Primal-Dual interior point Method is compared in some examples.

  • PDF

PRIMAL-DUAL 내부점법에 관한 연구 (A Study on Primal-Dual Interior-Point Method)

  • Seung-Won An
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.801-810
    • /
    • 2004
  • The Primal-Dual Interior-Point (PDIP) method is currently one of the fastest emerging topics in optimization. This method has become an effective solution algorithm for large scale nonlinear optimization problems. such as the electric Optimal Power Flow (OPF) and natural gas and electricity OPF. This study describes major theoretical developments of the PDIP method as well as practical issues related to implementation of the method. A simple quadratic problem with linear equality and inequality constraints

Primal Tree의 공간 분할 샘플링 분석 및 구현 (Analysis on Spatial Sampling and Implementation for Primal Trees)

  • 박태정
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권3호
    • /
    • pp.347-355
    • /
    • 2014
  • 컴퓨터 그래픽스나 기하 정보 분석 및 검색 등의 애플리케이션에서 일반적인 octree가 널리 사용된다. 그러나 거리장 등 공간에 분포하는 특정한 연속 정보를 샘플링하기 위한 목적으로 일반적인 octree를 적용할 경우 샘플링 데이터 중복과 샘플링 지점과 표현 단위의 불일치가 발생한다. 이 문제를 해결하기 위해 dual octree가 제안된 바 있다. 본 논문에서는 dual octree가 일반적인 octree의 단점은 해결했으나 무한하게 분할을 수행하더라도 특정한 연속 영역에 액세스하지 못한다는 사실을 증명하고 이러한 모든 문제들을 해결할 수 있는 대안으로 Lefebvre와 Hoppe가 제안한 primal tree를 응용할 수 있음을 제시한다. 또한 트리 구조의 병렬화에 널리 사용되는 Morton code를 응용한 3차원 primal tree 검색 알고리즘을 제안한다.

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.

SOLVING NONLINEAR ASSET LIABILITY MANAGEMENT PROBLEMS WITH A PRIMAL-DUAL INTERIOR POINT NONMONOTONE TRUST REGION METHOD

  • Gu, Nengzhu;Zhao, Yan
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.981-1000
    • /
    • 2009
  • This paper considers asset liability management problems when their deterministic equivalent formulations are general nonlinear optimization problems. The presented approach uses a nonmonotone trust region strategy for solving a sequence of unconstrained subproblems parameterized by a scalar parameter. The objective function of each unconstrained subproblem is an augmented penalty-barrier function that involves both primal and dual variables. Each subproblem is solved approximately. The algorithm does not restrict a monotonic decrease of the objective function value at each iteration. If a trial step is not accepted, the algorithm performs a non monotone line search to find a new acceptable point instead of resolving the subproblem. We prove that the algorithm globally converges to a point satisfying the second-order necessary optimality conditions.

  • PDF

NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • 대한수학회보
    • /
    • 제46권3호
    • /
    • pp.521-534
    • /
    • 2009
  • In this paper we present new large-update primal-dual interior point algorithms for $P_*$ linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{1}{\sigma}}(e^{{\sigma}(1-t)}-1)$, p $\in$ [0, 1], ${\sigma}{\geq}1$. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*$ LAPS. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*$ LAPS have $O((1+2+\kappa)n^{{\frac{1}{p+1}}}lognlog{\frac{n}{\varepsilon}})$ complexity bound. When p = 1, we have $O((1+2\kappa)\sqrt{n}lognlog\frac{n}{\varepsilon})$ complexity which is so far the best known complexity for large-update methods.

제한용량이 있는 설비입지결정 문제에 대한 적응형 평균치교차분할 알고리즘 (Adaptive Mean Value Cross Decomposition Algorithms for Capacitated Facility Location Problems)

  • 김철연;최경현
    • 대한산업공학회지
    • /
    • 제37권2호
    • /
    • pp.124-131
    • /
    • 2011
  • In this research report, we propose a heuristic algorithm with some primal recovery strategies for capacitated facility location problems (CFLP), which is a well-known combinatorial optimization problem with applications in distribution, transportation and production planning. Many algorithms employ the branch-and-bound technique in order to solve the CFLP. There are also some different approaches which can recover primal solutions while exploiting the primal and dual structure simultaneously. One of them is a MVCD (Mean Value Cross Decomposition) ensuring convergence without solving a master problem. The MVCD was designed to handle LP-problems, but it was applied in mixed integer problems. However the MVCD has been applied to only uncapacitated facility location problems (UFLP), because it was very difficult to obtain "Integrality" property of Lagrangian dual subproblems sustaining the feasibility to primal problems. We present some heuristic strategies to recover primal feasible integer solutions, handling the accumulated primal solutions of the dual subproblem, which are used as input to the primal subproblem in the mean value cross decomposition technique, without requiring solutions to a master problem. Computational results for a set of various problem instances are reported.

선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법 (A primal-dual log barrier algorithm of interior point methods for linear programming)

  • 정호원
    • 경영과학
    • /
    • 제11권3호
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

AN ELIGIBLE PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi;Lee, Yong-Hoon
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.279-292
    • /
    • 2013
  • It is well known that each kernel function defines a primal-dual interior-point method(IPM). Most of polynomial-time interior-point algorithms for linear optimization(LO) are based on the logarithmic kernel function([2, 11]). In this paper we define a new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has ${\mathcal{O}}((log\;p){\sqrt{n}}\;log\;n\;log\;{\frac{n}{\epsilon}})$ and ${\mathcal{O}}((q\;log\;p)^{\frac{3}{2}}{\sqrt{n}}\;log\;{\frac{n}{\epsilon}})$ iteration bound for large- and small-update methods, respectively. These are currently the best known complexity results.

OFDMA 셀룰러 네트워크에서의 D2D 통신을 위한 모드 선택 및 자원 할당 기법 (Joint Mode Selection and Resource Allocation for Device-to-Device Communication Underlaying OFDMA Cellular Networks)

  • 김태형;민경식;최수용
    • 한국통신학회논문지
    • /
    • 제39A권10호
    • /
    • pp.622-624
    • /
    • 2014
  • 본 논문은 OFDMA 셀룰러 네트워크 기반 최적 D2D 통신을 위한 모드 선택 및 자원할당 기법을 제안한다. 제안하는 기법은 단말의 채널 정보를 바탕으로 QoS를 만족하는 D2D-모드 가능 영역을 판별하고, Primal-Dual 알고리즘을 이용하여 최적의 해를 구한다. 시뮬레이션을 통해 제안하는 기법이 기존 기법대비 시스템 수율을 크게 개선함을 확인하였다.