• Title/Summary/Keyword: Pretilt Angle

Search Result 239, Processing Time 0.031 seconds

Study on ZnO Thin Film Irradiated by Ion Beam as an Alignment Layer (배향막 응용을 위한 이온 빔 조사된 ZnO 박막에 관한 연구)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Jong-Yeon;Kim, Young-Hwan;Kim, Jong-Hwan;Han, Jeong-Min;Ok, Chul-Ho;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.430-430
    • /
    • 2007
  • In this study, the nematic liquid crystal (NLC) alignment effects treated on the ZnO thin film layers using ion beam irradiation were successfully studied for the first time. The ZnO thin films were deposited on indium-tin-oxide (ITO) coated glass substrates by rf-sputter and The ZnO thin films were deposited at the three kinds of rf power. The used DuoPIGatron type ion beam system, which can be advantageous in a large area with high density plasma generation. The ion beam parameters were as follows: energy of 1800 eV, exposure time of 1 min and ion beam current of $4\;mA/cm^2$ at exposure angles of $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The homogeneous and homeotropic LC aligning capabilities treated on the ZnO thin film surface with ion beam exposure of $45^{\circ}$ for 1 min can be achieved. The low pretilt angle for a NLC treated on the ZnO thin film surface with ion beam irradiation for all incident angles was measured. The good LC alignment treated on the ZnO thin film with ion beam exposure at rf power of 150 W can be measure. For identifying surfaces topography of the ZnO thin films, atomic force microscopy (AFM) was introduced. After ion beam irradiation, test samples were fabricated in an anti-parallel configuration with a cell gap of $60{\mu}m$.

  • PDF

Novel Alignment Layers for Ion Beam Method and the Orientations of Liquid Crystal

  • Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo;Park, Chang-Joon;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1155-1158
    • /
    • 2004
  • Various inorganic alignment layers of nematic liquid crystal (NLC) molecules were investigated. Ar ion beam (IB) irradiation was utilized for alignment method and homogenous and homeotropic orientations with tilt angle were obtained on the suitable inorganic thin films. Proper doping materials were added to diamond-like carbon (DLC) films. In the case of homogeneous alignment, nitrogen doping affected the increase of pretilt angle, while the fluorine bonding in the DLC films was induced the tilted homeotropic alignment cause its extreme hydrophobic property. These results showed that ion beam irradiation method could be applied to the various alignment mode of NLC such as IPS, TN and MVA.

  • PDF

Alignment property change in DLC alignment layer containing various hydrogen concentration

  • Kim, Jong-Bok;Kim, Kyung-Chan;Ahn, Han-Jin;Hwang, Byung-Har;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.378-380
    • /
    • 2005
  • Diamond like carbon (DLC) films are known that they show homogeneous alignment property when they are irradiated by Ar ion beam. The DLC films in most of studies were deposited by CVD and contain large mount of hydrogen. In order to identity the hydrogen effect on alignment property, DLC films is deposited by RF magnetron sputter using various ratio of Ar and H2 as reactive gas. DLC films are characterized by FT-IR, Raman and contact angle. Alignment property is estimated by measuring pretilt angle.

  • PDF

A Study on Rubbing-induced Molecular Alignment on an Orientation Layer of Polyimide for Liquid Crystal Display (LCD의 폴리이미드 배향막에서 Rubbing에 의한 분자배향에 관한 연구)

  • 최승우;정재원;김승빈;황상만;천희곤;조동율
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.306-313
    • /
    • 1998
  • To elucidate the liquid crystal(LC) molecules alignment mechanism, it is important to determine the molecular orientation of the rubbed polymer surface molecules that directly contact with LC molecules. In this work, the molecular orientation on a rubbed surface of polyimide (SE-3310, Nissan) film has been studied by polarized FTIR absorption spectroscopy. It has been found that molecular chain on the rubbed surface of polymide film are oriented along the rubbing direction and are tilted up on an average by 5.0$^{\circ}$. In the SHG(Second Harmonic Generation) measurement, the pretilt angle of molecular chain on the poylmide fim was 4.6$^{\circ}$ fro, the surface plane. And the pedit angle of liquid crystal (ZLI-2293, Merck) molecules measured by crystal rotation method was 5.4$^{\circ}$in the same rubbing condition.

  • PDF

A Study on the Liquid Crystal Orientation Characteristics of the Inorganic NiOx Film with Aligned Nanopattern Using Imprinting Process (무기막 NiOx의 정렬 패턴 전사를 이용한 액정의 배향 특성 연구)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.357-360
    • /
    • 2019
  • We demonstrate an alignment technology using an imprinting process on an inorganic NiOx film. The aligned nanopattern was fabricated on a silicon wafer by laser interference lithography. The aligned nano pattern was then imprinted onto the sol-gel driven NiOx film using an imprinting process at an annealing temperature of $150^{\circ}C$. After the imprinting process, parallel grooves had been formed on the NiOx film. Atomic force microscopy and water contact angle measurements were performed to confirm the parallel groove on the NiOx film. The grooves caused liquid crystal alignment through geometric restriction, similar to grooves formed by the rubbing process on polyimide. The liquid crystal cell exhibited a pretilt angle of $0.2^{\circ}$, which demonstrated homogeneous alignment.

Liquid Crystal Orientation Properties on Homogeneous Polymer Surface by Various Alignment Methods

  • Kim, Young-Hwan;Lee, Kang-Min;Kim, Byoung-Yong;Oh, Byeong-Yun;Han, Jeong-Min;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.16-19
    • /
    • 2009
  • We have studied the liquid crystal alignment properties for various alignment methods on the homogeneous polyimide surface. Suitable liquid crystal alignment for one-side alignment cell on the polyimide surface by all alignment method was observed. Highly pre-tilt angle of the NLC for both-side rubbing cell was measured. But, low pre-tilt angle of the NLC for one-side ion beam and UV irradiation cell was observed. We consider that the pre-tilt angle of NLC for one-side ion beam and UV irradiation on the PI surface is lower than that of the PI surface with rubbing. Also, the suitable transmittance-voltage curves for the one-side rubbing TN-LCD on the PI surface with one-side UV irradiation were measured. Also, good response time characteristics of the one-side rubbing TN-LCD on the polyimide surface with one-side UV irradiation can be measured.

Study on Electro-optic Characteristics of the Optically Compensated Bend Liquid Crystal Display Using UV Curable Monomer (광경화성 단분자를 이용한 광학 보상 휨 액정 디스플레이의 전기광학 특성연구)

  • Lim, Young-Jin;Jeon, Eun-Jeong;Kwon, Dong-Won;Kim, Jeong-Hwan;Jeong, Kwang-Un;Lee, Myong-Hoon;Lee, Seung-Hee
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.496-500
    • /
    • 2009
  • Optically compensated bend liquid crystal display (OCB-LCD) has many application fields owing to its fast response time and wide viewing angle. However, in order to operate the OCB-LCD in bend state, this device needs quick transitions from the initial splay state to bend state. Unlike conventional approach using transient high voltage for the transition, the OCB-LCD with high surface tilt angle, which was achieved by polymerization of UV curable reactive mesogen monomer under certain voltage, was manufactured and the cell showed bend state initially. Electro-optic and electrical characteristics of the cell were analyzed. The cell shows a fast response time owing to high surface pretilt angle and very low residual DC less than 0.1 V although another polymer layer is formed above polymer alignment layers.

Improvement of optical properties in patterned vertical alignment mode with modified electrodes structure (전극구조 개선을 통한 PVA 셀의 광학특성 향상방안)

  • Gim, Hye-Young;Kim, Woo-Il;Kim, Dae-Hyun;Kwon, Dong-Won;Im, Se-Hyeon;Lee, Seung-Hee;Jeong, Yeon-Hak;Ryu, Jae-Jin;Kim, Kyeong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.172-172
    • /
    • 2010
  • The Patterned vertical alignment (PVA) mode has many advantages such as perfect dark state at the normal direction and wide viewing angle. However, PVA mode needs additional process to pattern electrodes of both substrates and complicated assembly process. Moreover, this mode shows slow response time. To overcome these problems, we use plane shape ITO on top substrate instead of patterned electrode and form proper tilt angle of LC director on the surface while maintaining these original merits. Consequently, we achieve fast response time and improve transmittance.

  • PDF

Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam (이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구)

  • Lee, Sang-Keuk;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Kim, Jong-Hwan;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF

Investigation on Liquid Crystal Alignment Effects of SiNx Thin Film Irradiated by Ion Beam (이온 빔 조사된 SiNx 박막의 액정 배향 효과에 관한 연구)

  • Lee, Sang-Keuk;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jin-Woo;Kang, Dong-Hun;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.398-398
    • /
    • 2007
  • Most recently, the Liquid Crystal (LC) aligning capabilities achieved by ion beam exposure on the diamond-like carbon (DLC) thin film layer have been successfully studied. The DLC thin films have a high mechanical hardness, a high electrical resistance, optical transparency and chemical inertness. Nitrogen doped Diamond Like Carbon (NDLC) thin films exhibit properties similar to those of the DLC films and better thermal stability than the DLC films because C:N bonding in the NDLC film is stronger against thermal stress than C:H bonding in the DLC thin films. Moreover, our research group has already studied ion beam alignment method using the NDLC thin films. The nematic liquid crystal (NLC) alignment effects treated on the SiNx thin film layers using ion beam irradiation for three kinds of N rations was successfully studied for the first time. The SiNx thin film was deposited by plasma-enhanced chemical vapor deposition (PECVD) and used three kinds of N rations. In order to characterize the films, the atomic force microscopy (AFM) image was observed. The good LC aligning capabilities treated on the SiNx thin film with ion beam exposure for all N rations can be achieved. The low pretilt angles for a NLC treated on the SiNx thin film with ion beam irradiation were measure.

  • PDF