• Title/Summary/Keyword: Prestressing

Search Result 554, Processing Time 0.025 seconds

Experimental Study for the Development of Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 개발을 위한 실험연구)

  • Kim, Jung Ho;Park, Kyung Hoon;Hwang, Yoon Koog;Choi, Young Min;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.593-602
    • /
    • 2002
  • A new type of bridge superstructures referred to as Steel-Confined Prestressed Concrete Girder (SCP Girder) was developed, which is composed of concrete, steel plate, and prestressing tendon. The girder may maximize structural advantages of these components; thus, long span bridges with low height girder may be constructed. For the effective design and fabrication of the gilder, the design software program was developed and the process of fabrication established. The experimental girder designed using the program was manufactured in actual size to confirm the fabric ability of the girder. Propriety of design, structural safety, and applicability of the gilder were verified through the load test.

Transfer length of 2400 MPa seven-wire 15.2 mm steel strands in high-strength pretensioned prestressed concrete beam

  • Yang, Jun-Mo;Yim, Hong-Jae;Kim, Jin-Kook
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.577-591
    • /
    • 2016
  • In this study, the transfer length of 2400 MPa, seven-wire high-strength steel strands with a 15.2 mm diameter in pretensioned prestressed concrete (PSC) beams utilizing high strength concrete over 58 MPa at prestress release was evaluated experimentally. 32 specimens, which have the variables of concrete compressive strength, concrete cover depth, and the number of PS strands, were fabricated and corresponding transfer lengths were measured. The strands were released gradually by slowly reducing the pressure in the hydraulic stressing rams. The measured results of transfer length showed that the transfer length decreased as the concrete compressive strength and concrete cover depth increased. The number of strands had a very small effect, and the effect varied with both the concrete cover depth and concrete strength. The results were compared to current design codes and transfer lengths predicted by other researchers. The comparison results showed that the current transfer length prediction models in design codes may be conservatively used for 2400 MPa high-strength strands in high-strength concrete beams exceeding 58 MPa at prestress release.

New technique for strengthening reinforced concrete beams with composite bonding steel plates

  • Yang, Su-hang;Cao, Shuang-yin;Gu, Rui-nan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.735-757
    • /
    • 2015
  • Composite bonding steel plate (CBSP) is a newly developed type of structure strengthened technique applicable to the existing RC beam. This composite structure is applicable to strengthening the existing beam bearing high load. The strengthened beam consists of two layers of epoxy bonding prestressed steel plates and the RC beam sandwiched in between. The bonding enclosed and prestressed U-shaped steel jackets are applied at the beam sides. This technique is adopted in case of structures with high longitudinal reinforcing bar ratio and impracticable unloading. The prestress can be generated on the strengthening steel plates and jackets by using the CBSP technique before loading. The test results of full-scale CBSP strengthened beams show that the strength and stiffness are enhanced without reduction of their ductility. It is demonstrated that the strain hysteresis effect can be effectively overcome after prestressing on the steel plates by using such technique. The applied plates and jackets can jointly behave together with the existing beam under the action of epoxy bonding and the mechanical anchorage of the steel jackets. The simplified formulas are proposed to calculate the prestress and the ultimate capacities of strengthened beams. The accuracy of formulas was verified with the experimental results.

Experimental study of moment redistribution and load carrying capacity of externally prestressed continuous composite beams

  • Chen, Shiming;Jia, Yuanlin;Wang, Xindi
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.605-619
    • /
    • 2009
  • A comparative experimental study of prestressed continuous steel-concrete composite beams was carried out. Two continuous composite beams were tested, one of which was plain continuous steel-concrete composite beam, while the other was a composite beam prestressed with external tendons. Cracking behavior and the load carrying capacity of the beams were investigated experimentally. Full plasticity was developed in the mid-span section each beam, the maximum moments attained at the internal support sections however were governed by local buckling which was related to the slenderness of composite section. It was found that in hogging moment regions, the ultimate resistance of an externally prestressed composite beam would be governed by either distortional lateral buckling or local buckling, or interactive mode of these two buckling patterns. The results show that exerting prestressing on a continuous composite beam with external tendons will increase the extent of internal force and moment redistribution in the beam. The influences of local and distortional buckling on the behaviors of the composite continuous beams are discussed. The Moment redistribution and the load carrying capacity of the prestressed continuous composite beams are evaluated, and it is found that at the ultimate state, the moment redistribution in the prestrssed continuous composite beams is greater than that in non-prestressed composite beams.

The Research and Application of Protective Coating for PCCP

  • Lin, Zhu;Xu, Cuizhu;Zhang, Li;Fan, Yunpeng;Zhang, Qibin
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.265-268
    • /
    • 2008
  • Prestressed Concrete Cylinder Pipe(PCCP) had became one of the dominating kinds of pipes substituting for steel pipes because of its unique feature (high intensity, high pressure and high leakproofness). PCCP was produced firstly by Bonna company in France. By the end of 20th century, there were over 19000 km of this product installed in America. PCCP was introduced from Ameron company by Shandong Eletric Power Pipeline Engineering Company in 1988. As the statistical data in 2002, 700 km of PCCP had been applied in China, and the application trended towards rapid increase.Since prestressing wire would be corroded in environment, Several accidents due to the breakdown of pipe had happened. Consequently the external wall of pipe should be covered with protective coatings. There was a lack of technical study in corrosion and control of PCCP, because PCCP had been applied for a short time in China. in order to ensure the service life of PCCP, we have developed a kind of protective coating for concrete pipe, which had high intensity and anti-corrosive property with convenient applicability. The physical and chemical properties, painting technology and field application of this coating was introduced in the paper, at the same time, the future of external protective coating for PCCP was looked into.

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

An Experimental Study on the Flexural Behavior of Prestressed Composite Double T-Beams (프리스트레스트 강합성 Double T-Beam의 휨거동 특성에 관한 실험적 연구)

  • Hong, Sung-Nam;Kim, Kwang-Soo;Han, Kyung-Bong;Park, Sun-Kyu;Yoo, Byoung-Eok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2007
  • The existing Double T-Beams have been positively constructed in America and Europe due to their elegant appearance and simple section shapes. However, there are some problems; thery are relatively weak in the structural resistance, and need to use somewhat limited and complicated construction methods. In this paper, new composite beams made of concrete and steel are proposed, by taking adventage of their merits in an effort to solve thess controversial problems. In addition, feasibility is presented in developing composite Double T-Beams by introducing pre-stressing forces as well to enhance structural safety.

Analysis of Long-Term Behaviors of Prestressed Concrete Structures (프리스트레스트 콘크리트 구조물의 장기거동 해석)

  • Kim, Woon-Hak;Hu, Man-Moo;Kim, Tae-Hoon;Choi, Jeong-Ho;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 2002
  • In the prestressed concrete structures, stresses are gradually redistributed with time due to the creep and shrinkage of concrete and the stress relaxation of prestressed steel. In this study a numerical procedure and computer program is developed to analyze the behavior of prestressed concrete structures considering the time-dependent properties of material. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The structural model uses two dimensional plane frame elements with three nodal degree of freedom and is analyzed based on the finite element method. Member cross section can consist of concrete, reinforcement and prestressing steel. Two different set of equations for the prediction of time-dependent material properties of concrete are presented, which are ACI, CEB-FIP. Analytical studies for different examples of prestressed concrete structures have been performed to demonstrated the capabilities and practical applicabilities of the developed program.

A Study on the Estimation of Prestress Losses in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 프리스트레스 손실 추정에 관한 연구)

  • Oh, Byung-Hwan;Yang, In-Hwan;Kim, Ji-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • This paper aims at estimating instantaneous prestress losses by measuring the actual prestress forces in prestressed concrete (PSC) box girder bridges. Measurement were taken to study initial prestress losses such as friction losses and slip losses. A new strain gauge system was developed to measure strains in internal tendons. The system was installed on a total of 20 tendons in a PSC box girder bridges. The variation of prestress forces were monitored during prestressing tendon and after prestress transfer. The prestress losses are also calculated including friction losses and slip losses. The measured data were compared with the theoretical values. The result shows that the measured prestress forces agree well with the theoretical values. It is shown that prestress force of each strand in the same tendon is a bit different. This study also shows that prestress losses of continuity tendons during prestress transfer are significantly different each other, which results from the variety of buttress location and tendon profile. The present study provides realistic information on the estimation of actual prestress forces and losses in PSC box girder bridges.

  • PDF

An Experimental Study on Development Length of Untensioned Prestressing Strand (인장을 가하지 않은 PS강연선의 정착길이에 대한 실험적 연구)

  • Choi, Jun-Young;Ha, Sang-Su;Kim, Seung-Hun;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.331-334
    • /
    • 2005
  • The nature of bond of untensioned prestressed strand in concrete differs from that of plain or deformed reinforcing bar as well as tensioned prestressed strand. There is a very limited amount of published research information regarding bonding of this type reinforcing. In order to use and design untensioned strand as reinforcing, relationships defining the load transfer characteristics of the strand are necessary. A program based upon pullout tests was designed to develop data relating the critical parameters for determining load transfer behavior of the untensioned strand. The purpose of this study is to investigate the characteristics of bond and development length between untensioned strand and concrete. The test variables include diameter of strands (9.3mm, 12.7mm) and development lengths. The maximum bond stress at the 9.3mm and 12.7mm strands decreases with the increase of the rate of development length. The untensioned prestressed strands displayed bond performance when secure development length more than 80$\%$ according to the development of deformed bars equation.

  • PDF