• Title/Summary/Keyword: Prestressing

Search Result 557, Processing Time 0.024 seconds

Load and Deflection Recovery Capacities of PSC Girder with Unbonded PS H-Type Steel

  • Kim, Jong Wook;Kim, Jang-Ho Jay;Kim, Tae-Kyun;Lee, Tae Hee;Yang, Dal Hun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1336-1349
    • /
    • 2018
  • Generally, a precast prestressed concrete (PSC) beam is used as girders for short-to-medium span (less than 30 m) bridges due to the advantages of simple design and construction, reduction of construction budget, maintenance convenience. In order to increase the span length beyond 50 m of precast PSC girder, PSC hollow box girder with unbonded prestressed H-type steel beam placed at the compressive region is proposed. The unbonded compressive prestressing in the H-type steel beams in the girder is made to recover plastic deflection of PSC girder when the pre-stressing is released. Also, the H-steel beams allow minimization of depth-to-length ratio of the girder by reducing the compressive region of the cross-section, thereby reducing the weight of the girder. A quasi-static 3-point bending test with 4 different loading steps is performed to verify safety and plastic deflection recovery of the girder. The experimental results showed that the maximum applied load exceeded the maximum design load and most of the plastic deflection was recovered when the compressive prestressing of H-type steel beams is released. Also using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and restoration difficulty and cost of PSC girders should be significantly reduced. The study result and analysis are discussed in detail in the paper.

Flexural Behavior of Precast PSC Segmental I Girder (Precast PSC-Segmental I형 거더의 휨거동에 관한 연구)

  • Hong, Sung Nam;Kim, Kwang Soo;Park, Sun Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.421-428
    • /
    • 2006
  • This study was performed by using experiment to minimize behavior difference of Monolithic and segmental Girder and to prove the design concept of the PSI (Precast PSC-Segmental I Grider). A full scale girder test was performed in four different cases, the monolithic girder, the segmental girder type-1, the segmental girder type-2 and the segmental girder type-3. The monolithic girder that was produced in one body 25 m span and the segmental girder that was jointed 5-sliced 5 m segment. The girder was built by as one body prestressing the tendons after manufacturing the segmental girder, and second prestressing after the casting of the slab concrete. The test result shows that the measured values were almost same or slightly bigger than the theoretical values which means that the PSI girder bridges concept came out to be reliable.

The Analysis for Reinforced Concrete Beams Strengthened with Externally Unbonded Prestressed CFRP Plates (비부착 탄소섬유판 긴장재로 외부 긴장 보강된 철근콘크리트 보의 해석)

  • Park, Jong Sup;Jung, Woo Tai;Park, Young Hwan;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.439-445
    • /
    • 2008
  • This paper suggests a modified bond reduction coefficient considering the average CFRP (Carbon Fiber Reinforced Polymer) strain concept for the unbonded prestressed CFRP plate strengthening system. The strengthened length and the pure bending length were seen to influence the variation of the strain of unbonded CFRP plate. Therefore, a new bond reduction coefficient considering such effect was suggested. Comparison with the experimental data revealed that the analytic results obtained by considering the proposed bond reduction coefficient were effective in estimating the strain of the unbonded CFRP plate in the CFRP plate prestressing system.

Evaluation of Structural Performance of Precast Prefabricated Bridge Column using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 조립식 교각의 성능 평가)

  • Chung, Chul-Hun;Yun, Yeon-Suk;Whang, Eun-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.383-390
    • /
    • 2008
  • A Precast Prefabricated Bridge Column using steel tube and prestressing bar was proposed for the application of precast method on substructure. A column specimen designed by the proposed bridge column system was made and performed a quasi-static test. The failure mode appeared to be a flexural failure and there is no damage on column segment connection. And it is good use of the self-centering ability by prestressing force. Test results showed that a column specimen satisfy the earthquake specification, and the structural stability was verified. Nonlinear finite element analysis was performed and compared with the test results. Force-displacement relation and location of crack from the analysis results were compared with the test results and it agreed well. The quantitative analysis was also performed by a parametric study using this modeling technique.

Time-dependent Parametric Analyses of PSC Composite Girders for Serviceability Design (사용성 설계를 위한 PSC 합성거더교의 시간의존적 변수해석)

  • Youn, Seok-Goo;Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.823-832
    • /
    • 2006
  • To ensure the serviceability requirements of PSC composite girder bridges, it is essential to predict the stresses and deformations of the structure under service load conditions. Stresses and deformations vary continuously with time due to the effects of creep and shrinkage of concrete and relaxation of prestressing steel. The importance of these time-dependent effects is much more pronounced in precast prestressed concrete structures built in stages than in those constructed in one operation. In this paper, time-dependent analyses for PSC composite bridges using 30m standard girders have been conducted considering with the variation of the times of introducing initial prestressing forces and casting concrete. A computer program has been developed for the time-dependent analysis of simple or continuous PSC composite girders and parametric studies are conducted. Based on the numerical results, it is investigated the long-term behaviors of PSC composite girder bridges and discussed the limitations of the current codes for the prestress loss.

Experimental Study on Static Behavior of Laterally Strengthened Spliced Prestressed Concrete Girder using Bending Moment Connector (휨연결재에 의해 횡방향으로 보강된 분절 프리스트레스트 거더의 정적거동에 관한 실험적 연구)

  • Kim, Jae Heung;Kim, Jang-Ho Jay;Kim, Sung Bae;Yi, Na Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • The main purpose of this study is to investigate the static behavior of spliced prestressed concrete girder with bending moment connector and lateral prestressing. Four (4) spliced girders and one (1) monolithic girder had been fabricated and tested to compare their static behaviors. Same geometry and materials are used to fabricate these spliced and monolithic girders. A monolithic girder and one (1) spliced girder without lateral bending connector are used as control specimens to estimate the performance of three (3) spliced girders with lateral bending connector. Deflections at the middle of girders have been measured for evaluation. Also, strains of the concrete at the middle of span and connection points have been measured. It was found from the result that laterally strengthened spliced girders showed improved ultimate strength but less stiffness compared to the monolithic girder at the ultimate state. Laterally strengthened spliced girder also showed improved strength as well as improved stiffness compared to the spliced girder without lateral strengthening.

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Analysis of the Flexural Strength of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates (CFRP판으로 프리스트레싱 보강된 RC 보의 휨강도 해석)

  • Woo, Sang-Kyun;Hong, Ki-Nam;Han, Sang-Hoon;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.181-192
    • /
    • 2007
  • The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally suggest the evaluation equations of flexural capacity of RC beams with the aim of application of prestressed CFRP strengthening. The experimental parameters are compressive strength, reinforcement ratio, prestressing level and strengthening methods. The non-prestressed specimens failed on account of separation of the plates from the beams due to premature de-bonding, while most of the prestressed specimens failed due to CFRP plate fracture. The evaluation equations of flexural capacity of RC beams is suggested and these equations have a good reliability in predicting flexural strength of RC beams.

The Flexural and Shear Behaviors of Steel-PSC Mixed Structural System with Front-Rear Plate Connection (전·후면판 공용방식 접합부를 갖는 강-PSC 혼합구조의 휨 및 전단거동)

  • Lho, Byeong-Cheol;Cho, Sung-Yong;Park, Hyun-Chul;Kim, Mun-Kyum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.201-212
    • /
    • 2007
  • This study presents experimental results of Steel-PSC mixed structural system having front-rear plate connection between Steel and Prestressed Concrete. Two kinds of Steel-PSC mixed structural system of 5.4m length were tested to evaluate flexural behaviors under four point loading, and 4 kinds of specimens with and without prestressing force at R & L type connection were tested to observe the shear behavior. Based on the test results of load-deflection curves and failure modes of specimens, it is found that the proposed L shape connection with front-rear plate connection between Steel and Prestressed Concrete has higher strength and stiffness. From the study, Steel-PSC mixed structural system with L shaped connection has a better structural performance in connection part.