DOI QR코드

DOI QR Code

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi (Department of Bridge Engineering, College of Civil Engineering, Tongji University) ;
  • Yuzhuo Zhong (Department of Bridge Engineering, College of Civil Engineering, Tongji University) ;
  • Haiying Ma (Department of Bridge Engineering, College of Civil Engineering, Tongji University) ;
  • Ke Hu (Anhui Transportation Holding Group Co., LTD) ;
  • Zhiquan Liu (Shanghai Briding Engineering Consulting Co., LTD) ;
  • Cheng Zeng (Technische Universitat Berlin)
  • Received : 2023.04.14
  • Accepted : 2023.10.12
  • Published : 2023.10.25

Abstract

Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Keywords

Acknowledgement

The research was financially supported by the fund from Anhui Transportation Holding Group Co. through the research project JKKJ-2020-43 and JKKJ-2020-17 and from Fundamental Research funds for the Central Universities (2023-2-YB-17). The authors are indebted to the Spanish Ministry of Science and Innovation for the funding through the research project PID2021-126405OBC31.

References

  1. AASHTO (2012), AASHTO LRFD Bridge Design Specification, American Association of State Highway and Transportation Officials, Washington, D.C., USA. 
  2. ACI 318 (2008), Building Code Requirements for Structure Concrete and Commentary, American Concrete Institute, Michigan, USA. 
  3. Allahyari, H., Dehestani, M., Beygi, M.H.A., Neya, B.N. and Rahmani, E. (2014), "Mechanical behavior of steel-concrete composite decks with perfobond shear connectors", Steel Compos. Struct., 17(3). 339-358. https://doi.org/10.12989/scs.2014.17.3.339. 
  4. Eurcode 4 (2004), Design of Composite Steel and Concrete Structures, EN 1994-1-1:2004. Brussels. 
  5. JTG D64 (2015), Specification for Design of Highway Steel Bridge, Ministry of Transport of China, Beijing, China 
  6. Gao, X. and Ou, J. (2009), "Monitoring data-based traffic load effect model statistical analysis for arch bridge suspender", Sensors Smart Struct. Technol. Civil, Mech. Aeros. Syst., 7292, 1065-1072. https://doi.org/10.1117/12.817805. 
  7. Gao, X.L., Wang, J.Y. and Yan, J.B. (2020), "Experimental studies of headed stud shear connectors in UHPC Steel composite slabs", Struct. Eng. Mech., 74(5), 657-670.  https://doi.org/10.12989/SEM.2020.74.5.657
  8. Hua, B., Zhu, A.J. and Sun, L. (2019), "Application of cable-girder anchorage structure formed of composite anchor tensile plates to concrete cable-stayed bridge", World Bridges, 47(2), 72-77. [in Chinese]. 
  9. He, J., Lin, Z.F., Liu, Y.Q., Xu, X.Q., X, H.H. and Wang, S.H. (2020), "Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders", Steel Compos. Struct., 36(5), 553-568. https://doi.org/10.12989/scs.2020.36.5.553. 
  10. Hosaka, T. (2002), "Study on shear strength and design method of perfobond strip", Japanese J. Struct. Eng., 48, 1265-1272. 
  11. Heristchian, M., Motamedi, M. and Pourakbar, P. (2015), "Tensile behavior of embedded steel sections with end plates", J. Struct. Eng., 141(10), 04014235. https://doi.org/10.1061/(asce)st.1943-541x.0001222. 
  12. Hu, Y.Q., Zhao, G.T., He, Z.Q., Qi, J.N. and Wang, J.Q. (2020), "Experimental and numerical study on static behavior of grouped large-headed studs embedded in uhpc", Steel Compos. Struct., 36(1), 103-118. https://doi.org/10.12989/scs.2020.36.1.103. 
  13. Kraus, D. and Wurzer, O. (1997), "Nonlinear finite-element analysis of concrete dowels", Comput. Struct., 64(5), 1271-1279. https://doi.org/10.1016/s0045-7949(97)00034-5. 
  14. Kim, S.H., Lee, C.G. and Davaadorj, A. (2010), "Experimental evaluation of joints consisting of parallel perfobond ribs in steel-PSC hybrid beams", Int. J. Steel Struct., 10(4), 373-384. https://doi.org/10.1007/bf03215845. 
  15. Kim, K.S., Han, O., Gombosuren, M. and Kim, S.H. (2019), "Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis", Steel Compos. Struct., 31(1), 53-67. https://doi.org/10.12989/scs.2019.31.1.053. 
  16. Liu, Y.Q., Xin, H.H. and Liu, Y.Q. (2018), "Load transfer mechanism and fatigue performance evaluation of suspender-girder composite anchorage joints at serviceability stage", J. Construct. Steel Res., 145, 82-96. https://doi.org/10.1016/j.jcsr.2018.02.010. 
  17. Li, C.J., Ren W.P. and Wei, X. (2009), "Full scale model test on tensile anchor plates in cable-girder anchorage of Guangzhou Dongsha Bridge", International Conference on Transportation Engineering 2009, 2261-2266. https://doi.org/10.1061/41039(345)374. 
  18. Li, Y.J., Liu, Y.Q. and Wang, F.H. (2018), "Load Transfer Mechanism of Hybrid Pylon Joint with Cells and Bearing plates", Adv. Civil Eng., 2018, 1-12. https://doi.org/10.1155/2018/6289721. 
  19. Liu, Y.Q., Xin, H.H and He, J. (2013), "Experimental and analytical study on fatigue behavior of composite truss joints", J. Construct. Steel Res., 83, 21-36. https://doi.org/10.1016/j.jcsr.2012.12.020. 
  20. Lin, Z.F. and Liu, Y.Q. (2015), "Experimental study on static behavior of headed studs under tensile force", J. TongJi Univ. (Nat. Sci.), 43(9), 1313-1319. [in Chinese]. 
  21. Lin, Z.F., Liu, Y.Q. and He, J. (2015), "Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone", Steel Compos. Struct., 18(6), 1369-1389. https://doi.org/10.12989/SCS.2015.18.6.1369. 
  22. Nie, J.G., Tao, M.X. and Fan, J.S. (2011), "Research on cable anchorage systems for self-anchored suspension bridges with steel box girders", J. Bridge Eng., 2011, 16(5), 633-643. https://doi.org/10.1061/(asce)be.1943-5592.0000190. 
  23. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal-weight concrete", AISC Eng. J., 8(2), 55-64.  https://doi.org/10.62913/engj.v8i2.160
  24. Oguejiofor, E.C. and Hosain, M.U. (1994), "A parametric study of perfobond rib shear connectors", Canadian J. Civil Eng., 21(4), 614-625. https://doi.org/10.1139/l94-063. 
  25. Precast/Prestressed Concrete Institute. (2004), PCI Design Handbook: Precast and Prestressed Concrete, Precast/Prestressed Concrete Institute, Chicago, USA. 
  26. People's Communications Press. (2018), Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts, People's Communications Press, Beijing, China. 
  27. Qin, X. and Yang, G. (2022), "Elastic stiffness of perfobond connections in composite structures", Steel Compos. Struct., 42(2), 221-241. https://doi.org/10.12989/SCS.2022.42.2.221. 
  28. Rajendran, S., Perumalsamya, J. and Mohanraj, D. (2022), "Push out tests on various shear connectors used for cold-formed steel composite beam", Steel Compos. Struc., 42(3), 315-323. https://doi.org/10.12989/SCS.2022.42.3.315. 
  29. Shi, Z., Sun, Z.T. and Yang, S.L. (2021), "Fatigue performance of butt-welded tensile plate cable-girder anchorages of long-span cable-stayed steel box girder railway bridges", J. Bridge Eng., 26(1), 04020108:1-12. https://doi.org/10.1061/(asce)be.1943-5592.0001645. 
  30. Shao, X., Deng, J. and Li, L. (2006), "Cable anchorage structure of self-anchored suspension bridge", China Civil Eng. J., 39(7), 81-87. 
  31. Shi, X.F., Zhou, J.Y. and Hu, K. (2016), "Experimental study of anchor tensile plate cable anchorage system in concrete girder of actual bridge", Bridge Construct., 46(3), 11-16. [in Chinese]. 
  32. Soty, R. and Shima, H. (2013), "Formulation for shear force-relative displacement relationship of L-shape shear connector in steel-concrete composite structures", Eng. Struct., 46(1), 581-592. https://doi.org/10.1016/j.engstruct.2012.09.003. 
  33. Tong, G.S. and Wu, G.M. (2005), "Design of anchor bolts in steel column bases", Progress Steel Build. Struct., 7(1), 27-36. [in Chinese]. 
  34. Taylor, P.R. and Torrejon, J.E. (1987), "Annacis bridge", Concrete Int., 9(7), 13-22. 
  35. Wu, X., Li, H. and Zhang, Z.C. (2015), "Study on tied arch bridge with through girder design", Proceedings of 2015 International Conference on Materials,Environmental and Biological Engineering(MEBE 2015), 1033-1036. 
  36. Wei, X. and Li, J. (2011), "Theoretical and experimental study on cable-to-girder anchorages in long-span cable-stayed bridges with steel box girder", Adv. Mater. Res., 255, 1315-1318.  https://doi.org/10.4028/www.scientific.net/AMR.255-260.1315
  37. Wei, X., Xiao, L. and Wang, Z.J. (2018), "Full-scale specimen testing and parametric studies on tensile-plate cable-girder anchorages in cable-stayed bridges with steel girders", J. Bridge Eng., 23(4), 04018006:1-12. https://doi.org/10.1061/(asce)be.1943-5592.0001193. 
  38. Xiang, H.F., Xiao, R.C. and Xu, L.P. (2011), "Conceptual design of bridges", China Commun. Press, 316-320. 
  39. Xie, H.W. (2019), "Research on shear performance of large stud connector in steel-UHPC composite structure", Master Degree Thesis, Southwest Jiaotong University, Chengdu. 
  40. Yao, Y.C., Pu, Q.H. and Yao, Y.D. (2014), "Mechanical features of cable-girder anchorage for long-span railway cable-stayed bridge with steel box girders", Appl. Mech. Mater., 587-589, 1391-1394. https://doi.org/10.4028/www.scientific.net/amm.587-589.1391. 
  41. Yang, Y. and Chen, Y. (2018), "Experimental study on the shear capacity of pbl shear connectors", Eng. Mech., 35(9), 89-96. [in Chinese].  https://doi.org/10.1061/(ASCE)BE.1943-5592.0001274
  42. Ye, H., Huang, R., Tang, S., Zhou, Y. and Liu, J. (2022), "Determination of shear stiffness for headed-stud shear connectors using energy balance approach", Steel Compos. Struct., 42(4), 477-487. https://doi.org/10.12989/SCS.2022.42.4.477. 
  43. Zeng, C. (2020), "Study on the load transfer mechanism of tensile anchor plate cable-girder anchorage structure in concrete cable-stayed bridge", Master Thesis, Tongji University. [in Chinese]. 
  44. Zhang, Y. Ruan, X. (2013), "Friction effects analysis of steel-concrete anchor plate in cable-beam anchorage zones of cable-stayed bridges", J. Central South Univ. (Sci. Technol.), 44(7), 2982-2988. [in Chinese]. 
  45. Zheng, S.J., Liu, Y.Q. and Yoda, T. (2016), "Shear behavior and analytical model of perfobond connectors", Steel Compos. Struct., 20(1), 71-89. https://doi.org/10.12989/scs.2016.20.1.071. 
  46. Zhang, Q.H., Jia, D.L. and Bao, Y. (2017), "Analytical study on internal force transfer of perfobond rib shear connector group using a nonlinear spring model", J. Bridge Eng., 22(10), 04017081. https://doi.org/10.1061/(asce)be.1943-5592.0001123. 
  47. Zhang, Q.H., Pei, S.L. and Cheng, Z.Y. (2016), "Theoretical and experimental studies of the internal force transfer mechanism of perfobond rib shear connector group", J. Bridge Eng., 22(2), 04016112. https://doi.org/10.1061/(asce)be.1943-5592.0000997.