• 제목/요약/키워드: Pressure-Based Boundary condition

검색결과 131건 처리시간 0.02초

Langmuir 미끄럼 모형을 사용한 미소채널 유동의 수치해석 (Numerical Analysis of Microchannel Flows Using Langmuir Slip Model)

  • 맹주성;최형일;이동형
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.587-593
    • /
    • 2002
  • The present research proposes a pressure based approach along with Langmuir slip condition for predicting microscale fluid flows. Using this method, gaseous slip flows in 2 -dimensional microchannels are numerically investigated. Compared to the DSMC simulation, statistical errors could be avoided and computing time is much less than that of the aforementioned molecular approach. Maxwell slip boundary condition is also studied in this research. These two slip conditions give similar results except for the pressure nonlinearity at high Knudsen number regime. However, Langmuir slip condition seems to be more promising because this does not need to calculate the streamwise velocity gradient accurately and to calibrate the empirical accommodation coefficient. The simulation results show that the proposed method using Langmuir slip condition is an effective tool for predicting compressibility and rarefaction in microscale slip flows.

진공네트웍 압력분포 해석의 일반화 (Generalization of the pressure profile analysis in a vacuum network)

  • 인상렬
    • 한국진공학회지
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 1999
  • 형태와 진공특성이 다른 여러 용기와 도관들로 구성된 진공네트웍의 압력분포를 계산할 때 단면이 서로 틀린 요소들의 연결부에서 입출구효과에 의해 발생하는 압력강하를 기체가 흐르는 방향에 상관없이 자동적으로 고려할 수 있는 경계조건을 만들었다. 또 원추형 도관처럼 단면이 변화하는 요소를 포함하고 있는 경우 시스템이 방향성을 가지지 않도록 도관 내에서의 압력강하를 보정하는 방법에 대해 소개한다. 개발된 경계조건을 간단한 예제 진공시스템에 적용하여 입자평형식에 근거를 둔 연립방정식을 작성하고 해를 구하는 과정을 구체적으로 설명한다.

  • PDF

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

LNG 압력용기의 설계 (A LNG Pressure Vessel Design)

  • 김정위
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.28-37
    • /
    • 2000
  • In this paper the LNG vessel of the Moss type which is capable of lifting 15,261 tons is investigated in the view point of the pressure vessel preliminary design using the finite element method. The Pressure vessel design is based on the equivalent stress levels due to the internal pressure. The finite element model of the spherical pressure vessel is configured using 4 noded quadrilateral shell element. The finite element analysis program NASTRAN and ANSYS 5.5are implemented. The design is compared with the three kinds of the boundary condition : first, where the equator of the pressure vessel is fixed, and where the top and is fixed, and, the bottom end is fixed, respectively. A comparison is presented between the results obtained by the finite element model and by the prototype production model. Additionally just below position(case 1 & case 2) of equator ring was carried out by using ANSYS 5.5. The results show that the vessel design based on the stress is acceptable at the preliminary design.

  • PDF

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF

폐쇄형 풍동 시험부 내의 비정상 흐름에 대한 Blockage 보정 기법 연구 (Blockage-Correction Method for Unsteady Flows in a Closed Test-Section Wind Tunnel)

  • 강승희;권오준;안승기
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.67-74
    • /
    • 2006
  • 아음속풍동 폐쇄형 시험부내의 비정상 벽면효과 보정 연구의 일환으로 시험부 벽면압력을 사용하는 비정상 흐름에 대한 blockage 보정 기법을 개발하였다. 시험부 벽면압력은 프리에 급수로 전개하고, 전개된 각 계수를 벽면압력측정 방법을 사용하여 전 주기에 대해 일괄적으로 보정하는 준 정상상태 보정 방법을 제시하였다. 본 연구에서 제시된 방법을 검증하기 위해 수치적으로 계산된 폐쇄형 시험부내의 원형실린더 및 강제 진동하는 익형의 비정상 흐름에 적용하였다. 그 결과 본 연구에서 제시된 방법은 자유흐름 상태와 일치되는 blockage 보정 결과를 보임을 확인하였다.

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • 제12권4호
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

트로코이달 헬리컬 기어의 비정상상태 유한요소해석

  • 박용복;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.37-46
    • /
    • 1994
  • In metal forming, there ar problems with recurrent geometric characteristics and without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. The present study deals with nonsteady-state three-dimensional finite element analysis for extrusion of a trocoidal helical gear through a curved die. The boundary-directed remeshing scheme based on the modular remeshing technique is developed to reduce the errors arising in fitting old and new mesh systems. The computed extrusion pressure in reaching the near steady-state loading stage is compared with the results of the experiment and the steady-state analysis. The three-dimensional deformed pattern involving warping at the extruded end due to torsional deformation mode is demonstrated.

  • PDF

난류유동 압력경계조건을 가진 실내공간에서의 오염물질 거동에 관한 수치적 예측 (A Numerical Prediction of Contamination Behavior in a Room under the Turbulent Flow and Pressure-Based Boundary Conditions)

  • 이재헌;노홍구;김광영;오명도
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1272-1281
    • /
    • 1990
  • 본 연구에서는 압력형 경계조건을 취급할 수 있도록, 속도 경계조건만을 취급 하는 전형적인 프로그램을 수정하여 실제 상황에 가까운 실내 공간 내부의 유동장을 예측하였다. 이때 난류 흐름방식의 강제 대류를 해석하기 위한 지배방정식으로서는 저레이놀즈수 K-.epsilon. 난류 모델을 도입하였다. 실내로 유입되는 공기의 영향을 받는 유동장이 예측된 후에는 실내에 존재하는 오염원의 갯수를 변화시키면서 실내 공간 에서의 오염 물질 분포를 수치적으로 계산하였다. 본 연구에서의 실내공간은 2차원 이라 가정하였으며 유동은 정상유동이라 간주하였다. 또한 실내 공간을 채우는 공기 량에 비하여 오염 물질의 양은 그 질량비가 0.1% 이하로서 상대적으로 아주적으므로, 오염된 공기의 밀도는 오염되지 않은 공기의 밀도와 동일하다고 가정한다.