• Title/Summary/Keyword: Pressure material

Search Result 4,556, Processing Time 0.031 seconds

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

The Effects of the Height and the Quality of the Material of Popular Heel-up Insole on the Mean Plantar Foot Pressure during Walking (보행시 보급형 키 높이 인솔의 높이와 재질이 평균 족저압에 미치는 영향)

  • Lee, Joong-Sook;Kim, Doo-Hwan;Jung, Bu-Won;Han, Dong-Wook;Park, Don-Mog
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • This study determined the effects of the height and the quality of the material of popular heel-up insole on mean plantar foot pressure during walking. Seven healthy college students who are studying at S university in Busan were as participants in this study. After sufficiently explaining about the research to the subjects before the experiment, mean plantar foot pressures were examined using F-Scan Pressure Measure System 5.23 for the gait with shoes inserted insole and the data were compared among the height and the quality of material of insoles. In the result, there was a difference significantly in the mean plantar foot pressure followed the height of insoles both left and right. Especially, mean plantar foot pressure in left indicated significantly lower in 3 cm and 5 cm insoles than in 0 cm and 1 cm insoles. Also mean plantar foot pressure in right showed significantly lower in 3 cm and 5 cm insoles than in 0 cm, and indicated significantly lower in 5 cm insoles than in 1 cm and 3 cm insoles. The mean plantar foot pressure followed the quality of the material of insoles were different significantly. In left, the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than urethane poly-acetyl inserted air insole, power-gel insole and jelly insole. And the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than power-gel insole and jelly insole in right. We showed that 3 cm and 5 cm insoles in the height of insoles and Urethane poly-acetyl insole in the quality of material were suitable to reduce a fatigue which is felt in plantar foot during the walking.

Study on the Evaporation Behaviour of Electrolytic Manganese Melt Under Reduced Pressure (감압 하에서 전해 망간 용탕의 증발거동에 관한 연구)

  • Hong, Seong-Hun;Jeon, Byoung-Hyuk;Wi, Chang-Hyun;Shin, Dong-Yub;You, Byung-Don;Seo, Seong-Mo;Park, Jong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.828-833
    • /
    • 2009
  • As a fundamental study in the development of a distillation process for ferromanganese alloy melts, the evaporation behavior of an electrolytic manganese melt under reduced pressure was investigated. The melt temperature, vacuum degree, surface area of the melt, and reaction time were considered as experimental variables. The amount of vaporized manganese increases linearly as the reaction time increases, and the evaporation of manganese was promoted by increasing the temperature and surface area of the melt. In the pressure range below the equilibrium vapor pressure of manganese, the amount of vaporized manganese per unit surface area of the melt increased sharply with a decrease of the pressure in the reaction chamber. An empirical equation for the evaporation rate of manganese was derived by regression analysis. The evaporation coefficient of manganese was determined to be approximately $3.84{\times}10^{-3}(g{\cdot}K^{1/2})/(Pa{\cdot}cm^2{\cdot}min)$ under the investigated conditions.

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF

Ultraviolet and green emission property of ZnO thin film grown at various ambient pressure (분위기 산소압 변화에 따른 ZnO 박막의 발광특성 변화)

  • 강정석;심은섭;강홍성;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.355-357
    • /
    • 2001
  • ZnO thin films were deposited on (001) sapphire substrate at various ambient gas pressure by pulsed laser deposition(PLD). Oxygen was used as ambient gas, and oxygen gas pressure was varied from 1.0${\times}$10$\^$-6/ Torr to 500 mTorr during the film deposition. As oxygen gas pressure increase in the region below critical pressure photoluminescence(PL) intensity in UV and green region increase. As oxygen gas pressure increase in the region above critical pressure photoluminescence(PL) intensity in UV and green region decrease. Each of critical ambient gas Pressures was 350 mTorr for UV emission and 200 mTorr for green emission.

  • PDF

Characteristics of Surface Micromachined Capacitive Pressure Sensors for High Temperature Applications (표면 MEMS 기술을 이용한 고온 용량형 압력센서의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper reports the fabrication and characterization of surface micromachined poly 3C-SiC capacitive pressure sensors on silicon wafer operable in touch mode and normal mode for high temperature applications. FEM(finite elements method) simulation has been performed to verify the analytical mode. The sensing capacitor of the capacitive pressure sensor is composed of the upper metal and the poly 3C-SiC layer. Measurements have been performed in a temperature range from $25^{\circ}C$ to $500^{\circ}C$. Fabrication process of designed poly 3C-SiC touch mode capacitive pressure sensor was optimized and would be applicable to capacitive pressure sensors that are required high precision and sensitivity at high pressure and temperature.

Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines (파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가)

  • Lee, Ouk-Sub;Kim, Eui-Sang;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

Fabrication of Ceramic Thin Film Type Pressure Sensors for High-Temperature Applications and Their Characteristics (고온용 세라믹 박막형 압력센서의 제작과 그 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.790-794
    • /
    • 2003
  • This paper describes the fabrication and characteristics of ceramic thin film type pressure sensors based on Ta-N strain gauges for high temperature applications. Ta-N thin-film strain gauges are deposited onto a thermally oxidized Si diaphragm by RF sputtering in an argon-nitrogen atmos[here($N_2$ gas ratio: 8%, annealing condition: 90$0^{\circ}C$, 1 hr.), patterned on a wheatstone bridge configuration, and used as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is 1.097 ~ 1.21 mV/Vㆍkgf/$\textrm{cm}^2$ in the temperature range of 25 ~ 200 $^{\circ}C$ and the maximum non-linearity resistance), non-linearity than existing Si piezoresistive pressure sensors. The fabricated ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that os operable under high-temperature.

Dielectric Characteristics of Polytetrafluoroethylene-based Composites for Microwave Substrates with Formation Pressure (고주파 기판용 PTFE 복합체 형성 압력에 따른 유전 특성)

  • Choi, Hong Je;Chun, Myung Pyo;Cho, Yong Soo;Cho, Hak Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.429-433
    • /
    • 2013
  • PTFE composites for use of microwave substrate were fabricated by impregnation and heat treatment fabrication with glass fabric. This study shows dielectric properties such as dielectric constant and loss can be controlled by thickness of PTFE composite with change of pressure condition in heating press process. The dielectric constant of the PTFE composites has decreasing tendency as given higher pressure condition. The dielectric loss has similar result too. Especially, the case of the dielectric loss was affected by the condition of pressure at heating press and had the best performance under 3 MPa. In order to see the reason why thickness conditions make different, their microstructures were also observed.

Fabrication Process of Rheology Material Thin Plate Using Vacuum Low Pressure Die-casting Process with Electromagnetic Stirring (레오로지 박판의 전자교반을 응용한 진공 저압주조 제조공정)

  • Jang, Sin-Kyu;Bae, Jung-Woon;Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • In this study, we develop the lower pressure die casting with rheo-forming process of A356 aluminum alloy and vacuum system which can control the crystal size and obtain the high strengthened-light material. Using this process, we fabricate the thin plate for bipolar plate through the low pressure die casting with electromagnetic stirring and vacuum-evacuation which can control the crystal grain by electromagnetic stirring. Thin plate ($110mm{\times}130mm{\times}1mm$) is fabricated by this process. The average Vickers hardness of thin plate is about 77 HV.