Study on the Evaporation Behaviour of Electrolytic Manganese Melt Under Reduced Pressure

감압 하에서 전해 망간 용탕의 증발거동에 관한 연구

  • Hong, Seong-Hun (Division of Material Science and Engineering, Inha University) ;
  • Jeon, Byoung-Hyuk (Division of Material Science and Engineering, Inha University) ;
  • Wi, Chang-Hyun (Division of Material Science and Engineering, Inha University) ;
  • Shin, Dong-Yub (Division of Material Science and Engineering, Inha University) ;
  • You, Byung-Don (Division of Material Science and Engineering, Inha University) ;
  • Seo, Seong-Mo (Technical Research Laboratories, POSCO) ;
  • Park, Jong-Min (Technical Research Laboratories, POSCO)
  • 홍성훈 (인하대학교 공과대학 신소재공학부) ;
  • 전병혁 (인하대학교 공과대학 신소재공학부) ;
  • 위창현 (인하대학교 공과대학 신소재공학부) ;
  • 신동엽 (인하대학교 공과대학 신소재공학부) ;
  • 유병돈 (인하대학교 공과대학 신소재공학부) ;
  • 서성모 (POSCO 기술연구소) ;
  • 박종민 (POSCO 기술연구소)
  • Received : 2009.08.17
  • Published : 2009.12.20

Abstract

As a fundamental study in the development of a distillation process for ferromanganese alloy melts, the evaporation behavior of an electrolytic manganese melt under reduced pressure was investigated. The melt temperature, vacuum degree, surface area of the melt, and reaction time were considered as experimental variables. The amount of vaporized manganese increases linearly as the reaction time increases, and the evaporation of manganese was promoted by increasing the temperature and surface area of the melt. In the pressure range below the equilibrium vapor pressure of manganese, the amount of vaporized manganese per unit surface area of the melt increased sharply with a decrease of the pressure in the reaction chamber. An empirical equation for the evaporation rate of manganese was derived by regression analysis. The evaporation coefficient of manganese was determined to be approximately $3.84{\times}10^{-3}(g{\cdot}K^{1/2})/(Pa{\cdot}cm^2{\cdot}min)$ under the investigated conditions.

Keywords

References

  1. J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim, K. G. Jin, S. K. Kim, and K. H. Song, J. Kor. Inst. Met. & Mater. 46, 627(2008)
  2. D. S. Kozak and L. R. Matricardi, Iron and Steelmaker. 8, 28 (1981)
  3. B. D. You, J. Kor. Inst. Met. & Mater. 33, 1508 (1995)
  4. B. D. You, K. Y. Park, J. J. Pak, and J. W. Han, Metals and Materials. 5, 395 (1999) https://doi.org/10.1007/BF03026165
  5. B. D. You, J. W. Han, and J. J. Pak, Steel Research. 71, 22(2000)
  6. B. D. You, B. W. LEE, and J. J. PAK, Metals and Materials 5, 497 (1999) https://doi.org/10.1007/BF03026165
  7. K. Maya and T. Matsuo, Tetsu-to-Hagane. 82, 25 (1996)
  8. M. Fujita, H. Katayama, A. Yamamoto, and M. Matsuo, Tetsu-to-Hagane. 74, 64 (1988)
  9. Y. E. Lee, Proc. 6th Intern. Iron & Steel Congr., p. 327, ISIJ, Nagoya, Japan (1990)
  10. S. H. Hong, B. H. Jeon, B. D. You, J. D. Kim, P. Y. Jang, S. C. Kang, and C. H. Geum, J. Kor. Inst. Met. & Mater., (In Press)
  11. I. Barin, Thermochemical Data of Pure substances 3rd ed., p. 1033-1034, VCH, Weinheim, (1989)
  12. J. J. Moore, Chemical Metallurgy, 2nd ed., p. 260-262, Butterworth Heinemann Ltd, Oxford (1990)
  13. R. F. Bunshah, J. M. Blocher, D. M. Mattox, T. D. Bonifield, G. E. Mcguire, J. G. Fish, M. Schwartz, P. B. Ghate, J. A. Thornton, B. E. Jacobson, and R. C. Tucker, Deposition Technologies for Films and Coatings, Noyes Publications, p. 90-92, Park Ridge, New Jersey (1982)