• Title/Summary/Keyword: Pressure material

Search Result 4,569, Processing Time 0.238 seconds

Influence of Sputter Pressure on the Structural and Optical Properties of CdTe Films (Sputtering 으로 증착된 압력변화에 따른 CdTe 박막특성)

  • Lee, Dong-Jin;Lee, Jae-Hyeong;Lee, Jong-In;Jung, Hak-Kee;Jong, Dong-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.106-107
    • /
    • 2006
  • Cadmium telluride (CdTe) films have been prepared on Corning 7059 glass, molybdenum (Mo), and polyimide (PI) substrates by r.f. magnetron sputtering technique. The influence of the sputter pressure on the structural and optical properties of these films was evaluated. In addition, a comparison of the properties of the films deposited on fferent substrates was performed.

  • PDF

A Prediction of Bursting Failure in Tube Hydroforming Process Based on Necking Conditions (네킹발생조건에 의한 관재 액압성형 공정에서의 터짐 불량 예측)

  • 김상우;김정;박훈재;강범수
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.629-634
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined infernal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity for anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy Parameter, strain hardening exponent and strength coefficient on bursting Pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

Hydrodynamic Pressure and Shear Stress in Chemical Mechanical Polishing (화학기계적연마 공정의 윤활역학적 압력 및 전단응력 분포 해석)

  • 조철호;박상신;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-184
    • /
    • 2000
  • Chemical Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active and abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves hydrodynamic behavior. The liquid slurry is trapped between the work piece and pad forming a hydrodynamic film. For the first step to understand material removal mechanism of the CMP process, the hydrodynamic analysis is done with semiconductor wafer. Three-dimensional Reynolds equation is applied to get pressure distribution of the slurry film. Shear stress distributions on the wafer surface are also analyzed

  • PDF

A Study on the Prediction of the Final Weight for the Injection Molded Rectangular Plates (사각판 사출성형품의 최종무게 예측에 관한 연구)

  • Lee, Chang-Hoon;Yoon, Kyunghwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.130-137
    • /
    • 1996
  • In the present paper the effect of various process conditions on the final weight of injection molded rectangular plates has been investigated in detail. The main parameters involved in the simulations were melt temperature, mold temperature, injection speed and packing pressure. The dimensions of the plate used were 100mm long, 2mm of width and polystyrene was used as a molding material. The shear viscosity of the polymeric material was treated as a function of shear rate, temperature and pressure through the whole processes including packing and cooling stages. By increasing a packing pressure the final weight of sample increased linearly. Furthermore, as the melt temperature, the mold temperature and the injection speed increased, the final weight of the injection molded plate decreased within the molding window.

  • PDF

Surface Stress Profiles at the Contact Boundary in Backward Extrusion Processes for Various Punch Shapes (후방압출에서 펀치형상에 따른 접촉경계면의 표면부하상태)

  • Noh, J.H.;Kim, M.T.;Vishara, R.J.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.565-571
    • /
    • 2009
  • This paper is concerned with the analysis on the surface stress profiles of perfectly plastic material in backward extrusion process. Due to heavy surface expansion appeared usually in the backward extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the analyses have focused to reveal the surface conditions at the contact boundary for various punch shapes in terms of surface expansion, contact pressure, and relative movement between punch and workpiece which consists of sliding velocity and distance, respectively. Punch geometries adopted in the analysis include concave, hemispherical, pointed and ICFG recommended shapes. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward extrusion process under different punch geometries. The simulation results are summarized in terms of surface expansion, contact pressure, sliding velocity and sliding distance at different reduction in height, deformation patterns, and load-stroke relationship, respectively.

Characteristics of Piezoelectric Microspeakers according to the Material Properties (물성변화에 따른 압전형 마이크로스피커의 특성)

  • Jeong, Kyong-Shik;Cho, Hee-Chan;Yi, Seung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.556-561
    • /
    • 2008
  • This paper reports the characteristics of piezoelectric microspeakers that are audible in open air with high quality piezoelectric AlN thin film according to the materials properties. When we use a tensile-stressed silicon nitride diaphragm as a supporting layer, the Sound Pressure Level (SPL) is relatively small and constant at low frequency region and shows about 70 dB at 10 kHz. However, in case of a compressively stressed composite diaphragm, the SPL of the fabricated microspeakers shows higher output pressure than those of a tensile-stressed diaphragm. It produces more than 66 dB from 100 Hz to 15 kHz and the highest SPL is about 100 dB at 9.3 kHz with $20V_{peak-to-peak}$, sinusoidal input biases and at 10 mm distances from the fabricated microspeakers to the reference microphone. From the experimental results, it is superior to have a compressively composite diaphragm in order to produce a high SPL in piezoelectric microspeaker.

A Study on the Ultrasonic Machining Characteristics of Alumina Ceramics (알루미나 세라믹의 초음파가공 특성 연구)

  • Kang, Ik-Soo;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho;Seo, Yong-Wie
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study alumina($Al_2O_3$) was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios (abrasives water by weight) of 11, 13 and 15 with different tool shapes and applied pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 11 and static pressure of $25kg/cm^2$, maximum material removal rate of $18.97mm^3/mm$ was achieved with mesh number of 600 SiC abrasives and static pressure of $30kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

  • PDF

Selective etch of silicon nitride, and silicon dioxide upon $O_2$ dilution of $CF_4$ plasmas ($CF_4$$O_2$혼합가스를 이용한 산화막과 질화막의 선택적 식각에 관한 연구)

  • 김주민;원태영
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.90-94
    • /
    • 1995
  • Reactive Ion Etching(RIE) of Si$_{3}$N$_{4}$ in a CF$_{4}$/O$_{2}$ gas plasma exhibits such good anisotropic etching properties that it is widely employed in current VLSI technology. However, the RIE process can cause serious damage to the silicon surface under the Si$_{3}$N$_{4}$ layer. When an atmospheric pressure chemical vapor deposited(APCVD) SiO$_{2}$ layer is used as a etch-stop material for Si$_{3}$N$_{4}$, it seems inevitable to get a good etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$. Therefore, we have undertaken thorough study of the dependence of the etch rate of Si$_{3}$N$_{4}$ plasmas on $O_{2}$ dilution, RF power, and chamber pressure. The etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$ has been obtained its value of 2.13 at the RF power of 150 W and the pressure of 110 mTorr in CF$_{4}$ gas plasma diluted with 25% $O_{2}$ by flow rate.

  • PDF

A Numerical Study on the Dynamic Characteristics of Power Metal using Split Hopkinson Pressure Bar (홉킨스바 장치를 이용한 분말금속의 동적 특성에 관한 수치해석적 연구)

  • Hwang, Du-Sun;Lee, Seung-U;Hong, Seong-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2972-2979
    • /
    • 2000
  • Dynamic characteristics of powder metal is very important to mechanical structures requiring high strength or endurance for impact loading. But owing to distinctive property of powder metal, that is relative, it has been investigated restrictively compared to static characteristics. The objectives of this study is to investigate dynamic characteristics of powder metal and compare it to a fully density material. To find the characteristics, an explicit finite element method is used for simulation of Split Hopkinson Pressure Bar experiment based on the stress wave propagation theory. We obtained a dynamic stress-strain relationship and dynamic behavior of powder metal, as well as the variation of material properties during dynamic deformation.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.