• Title/Summary/Keyword: Pressure estimation

Search Result 993, Processing Time 0.032 seconds

Virtual Brake Pressure Sensor Using Vehicle Yaw Rate Feedback (차량 요레이트 피드백을 통한 가상 제동 압력 센서 개발)

  • You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.113-120
    • /
    • 2016
  • This paper presents observer-based virtual sensors for YMC(Yaw Moment Control) systems by differential braking. A high-fidelity empirical model of the hydraulic unit in YMC system was developed for a model-based observer design. Optimal, adaptive, and robust observers were then developed and their estimation accuracy and robustness against model uncertainty were investigated via HILS tests. The HILS results indicate that the proposed disturbance attenuation approach indeed exhibits more satisfactory pressure estimation performance than the other approach with admissible degradation against the predefined model disturbance.

A Study of Shield TBM Tunnelling-induced Volume Loss Estimation Considering Shield Machine Configurations and Driving Data (쉴드 TBM의 장비 형상 및 굴진 데이터를 고려한 체적손실 산정 연구)

  • Park, Hyunku;Chang, Seokbue;Lee, Seungbok
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.397-407
    • /
    • 2015
  • Estimation of shield TBM tunnelling-induced volume loss is of great importance for ground settlement control. This study proposed a simple method for evaluation of volume loss during TBM tunnlling, which is able to take into account of shield machine configurations and main driving data in calculation. The method was applied to analyze the tunnelling cases with earth pressure balanced and slurry pressure balanced shiled TBM, and mostly, reasonable agreements with monitoring results were found. Additional discussions were made for some disagreements.

Quantification of Acoustic Pressure Estimation Error due to Sensor Position Mismatch in Spherical Acoustic Holography (구형 음향 홀로그래피에서 측정위치 부정확성에 의한 음압 추정 오차의 정량화)

  • Lee, Seung-Ha;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1325-1328
    • /
    • 2007
  • When we visualize the sound field radiated from a spherical sound source, spherical acoustic holography is proper among acoustic holography methods. However, there are measurement errors due to sensor position mismatch, sensor mismatch, directivity of sensor, and background noise. These errors are amplified if one predicts the pressures close to the sources: backward prediction. The goal of this paper is to quantitatively examine the effects of the error due to sensor position mismatch on acoustic pressure estimation. This paper deals with the cases of which the measurement deviations are distributed irregularly on the hologram plane. In such cases, one can assume that the measurement is a sample of many measurement events, and the cause of the measurement error is white noise on the hologram plane. Then the bias and random error are derived mathematically. In the results, it is found that the random error is important in the backward prediction. The relationship between the random error amplification ratio and the measurement parameters is derived quantitatively in terms of their energies.

  • PDF

Estimation of Nonlinear Parameter in Water - saturated Sandy Sediment by using Difference Frequency Acoustic wave (수중 모래 퇴적물에서 차 주파수 음파를 이용한 비선형 변수 추정)

  • Kim Byoung-Nam;Lee Kang Il;Yoon Suk Wang;Choi Bok Kyung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.429-432
    • /
    • 2004
  • Nonlinear acoustic responses of water-saturated sediments are very important to understand nonlinear phenomena of gassy ocean sediments. Especially, the second harmonic, the sum and the difference frequency acoustic waves in water-saturated sediments can provide practical criteria to estimate the nonlinear parameter of gassy sediments. In this paper, the difference frequency acoustic wave in water-saturated sandy sediment was observed in a water tank experiment with a pulse transmission technique. Its pressure level was 12 dB higher than the background noise level at a maximum undistorted driving pressure of source acoustic transducer. The experimental results were compared with a theoretical estimation of the parametric acoustic array. The nonlinear parameter of water-saturated sandy sediment was also estimated as 73 with their comparison. This value can be utilized as the background information to estimate gas void fraction in the water-saturated gassy sandy sediment.

  • PDF

The Study of Evaluating The Degree of Consolidation of The Dredged and Reclaimed Soft Ground (준설매립된 연약지반의 압밀도 산정에 관한 연구)

  • Kim, Seung-Tyull;Jung, Hun-Chul;Park, Chi-Myeon;Shin, Kyung-Ha;Jung, Ki-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.469-478
    • /
    • 2005
  • Understanding of an accurate state of consolidation of underconsolidated clay body, like a recently dredged or reclaimed clay deposits, is one of the most difficult tasks. The estimation of the consolidation status of these clay bodies is often made by laboratory tests of numerical analyses. However these methods demonstrated crucial limitations in the accurate prediction. Therefore, the predicted degree of consolidation from various techniques is verified by actual measured field data. The degree of consolidation of clay body in the East Side Hinterland of Gwangyang Port(2nd Phase) is evaluated in this study by using various techniques such as oedometer test, CPTu, numerical analysis and piezometer tests etc. And the results are compared each other to find the most reliable prediction technique. The merit and reliability of each method is discussed in detail. It is revealed from in this study that the estimation of degree of consolidation by an actual pore water pressure measurements is the most reliable technique.

  • PDF

Establishment of CTD Calibration System and Uncertainty Estimation (CTD 교정 시스템 구축 및 불확도 평가)

  • Lee, Jung-Han;Hwang, Keun-Choon;Kim, Eun-Soo;Lee, Seung-Hun
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.77-85
    • /
    • 2014
  • The quality control of ocean observations data is becoming a major issue as real-time observational data and information services have increased recently. Therefore, it is necessary for oceanographic instruments to calibrate. In this paper, we first introduce the CTD calibration system and traceability. Next, CTD calibration procedures and estimation of uncertainty of measurement are described. The expanded uncertainty (k = 2) of the temperature, pressure and conductivity are 0.$0.003^{\circ}C$, $6.0{\times}10^{-5}$ and 0.006 mS/cm respectively. Finally, the excellence of CTD calibration and its measurement capability has been proven by comparing the inter-calibration result of KIOST and Sea-Bird Electronics (SBE). CTD calibration residuals are less than ${\pm}0.0001^{\circ}C$, ${\pm}0.001$ MPa, ${\pm}0.0001$ S/m for SBE 3plus temperature sensor, SBE 19plus pressure sensor and SBE 4C conductivity sensor respectively.

Underwater Localization using EM Wave Attenuation with Depth Information (전자기파의 감쇠패턴 및 깊이 정보 취득을 이용한 수중 위치추정 기법)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.156-162
    • /
    • 2016
  • For the underwater localization, acoustic sensor systems are widely used due to greater penetration properties of acoustic signals in underwater environments. On the other hand, the good penetration property causes multipath and interference effects in structured environment too. To overcome this demerit, a localization method using the attenuation of electro-magnetic(EM) waves was proposed in several literatures, in which distance estimation and 2D-localization experiments show remarkable results. However, in 3D-localization application, the estimation difficulties increase due to the nonuniform (doughnut like) radiation pattern of an omni-directional antenna related to the depth direction. For solving this problem, we added a depth sensor for improving underwater 3D-localization with the EM wave method. A micro scale pressure sensor is located in the mobile node antenna, and the depth data from the pressure sensor is calibrated by the curve fitting algorithm. We adapted the depth(z) data to 3D EM wave pattern model for the error reduction of the localization. Finally, some experiments were executed for 3D localization with the fast calculation and less errors.