• Title/Summary/Keyword: Pressure Exchange

Search Result 389, Processing Time 0.029 seconds

Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석)

  • Lee, Yongkyu;Jung, Ikhwan;Na, Jonggeol;Park, Seongho;Kshetrimayum, Krishnadash S.;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.818-823
    • /
    • 2015
  • In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of $H_2$ and CO($H_2/CO$ molar ratio = 2) is used as a reactant and operating conditions are the following: GHSV(gas hourly space velocity) = $10000h^{-1}$, pressure = 20 bar, and temperature = 483 K. From the simulation study, it was confirmed that heat removal in an FT microchannel reactor is affected channel geometry variables. Of the channel geometry variables considered, channel height and width have significant effect on the channel temperature profile. However, gap between cooling surface and process channel, and gap between process channels have little effect. Maximum temperature in the reaction channel was found to be proportional to channel height, and not affected by the width over a particular channel width size. Therefore, microchannels with smaller channel height(about less than 2 mm) and bigger channel width (about more than 4 mm), can be attractive design for better heat removal and higher production.

The Development and its Application of Diagnostic Technique for Corrosion Defect of U-type Open Rack Vaporizer (개방형 U-type 기화기의 부식손상부 진단기법 개발 및 적용)

  • Jang S. Y.;Lee S. M.;Oh B. T.;Kho Y. T.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.45-50
    • /
    • 2001
  • Open rack vaporizer (ORV) has been used in liquefied natural gas (LNG) receiving terminal in order to vaporize LNG into natural gas (NG) by heat exchange with seawater The U-type ORV which had been operated with seawater for 14 years is one of the important utilities of the gas production and the weld part of tube connected with header_ pipe had experienced many corrosion problems. To elucidate the cause of corrosion at weld part of vaporizer tube, corrosion potentials were compared by parts. This study concerns on the measurement of corrosion pit depth using non-destructive method and the evaluation of stress distribution in an aspect of safety with finite element analysis. In order to confirm the reliability of galvanic corrosion between weld parts and base metal, the measurement of corrosion potential by parts was conducted for 20 minutes in 3.5$\%$(wt.) NaCl solution. Many non-destructive methods were tried to measure the remaining thickness of vaporizer tube at fields. For general corrosion, tangential radiography test was confirmed as an effective method. In case of a fine corrosion pit, the shape of corrosion pit was reproduced using surface replication method. From collected data, stress distributions were quantitatively evaluated with 2-dimensional finite element method and the diagnostic evaluation on internal pressure of the U-type vaporizer could be made.

  • PDF

Numerical Study of Turbulent Heat Transfer in Helically Coiled Tubes (나선형 튜브내의 난류 열전달에 대한 수치적 연구)

  • Yoon, Dong-Hyeog;Park, Ju-Yeop;Seul, Kwang-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.783-789
    • /
    • 2012
  • In this study, turbulent flow and heat transfer characteristics in a helically coiled tube have been numerically investigated. Helically coiled tubes are commonly used in heat exchange systems to enhance the heat transfer rate. Accordingly, they have been widely studied experimentally; however, most studies have focused on the pressure drop and heat transfer correlations. The centrifugal force caused by a helical tube increases the wall shear stress and heat transfer rate on the outer side of the helical tube while decreasing those on the inner side of the tube. Therefore, this study quantitatively shows the variation of the local Nusselt number and friction factor along the circumference at the wall of a helical tube by varying the coil diameter and Reynolds number. It is seen that the local heat transfer rate and wall shear stress greatly decrease near the inner side of the tube, which can affect the safety of the tube materials. Moreover, this study verifies the previous experimental correlations for the friction factor and Nusselt number, and it shows that the correlation between the two in a straight tube can be applied to a helical tube. It is expected that the results of this study can be used as important data for the safety evaluation of heat exchangers and steam generators.

The Effect of Corporate Social Responsibilities on the Quality of Corporate Reporting (기업의 사회책임이 기업경영보고의 질에 미치는 영향)

  • Jeong, Kap-Soo;Park, Cheong-Kyu
    • Journal of Distribution Science
    • /
    • v.14 no.6
    • /
    • pp.75-80
    • /
    • 2016
  • Purpose - A growing demand for sustainability reporting has placed pressure on firms with non-financial information that affects firm valuation, growth, and development. In particular, a number of researchers have investigated various topics in Corporate Social Responsibility (CSR), non-financial information. Prior studies suggest that CSR may affect corporate outcomes like corporate reporting, financial performance, and disclosures. However, the results from prior studies are not clear whether CSR affects corporate outcomes. This is partially due to the measurement issues with CSR. In this study, we examine whether CSR affects the quality of corporate reporting, one of the popular measures in corporate outcomes. We find an evidence that CSR positively affects the quality of corporate reporting. Research design, data, and methodology - In this study, we collected a unique dataset of CSR from MSCI. Total 169 firms listed in the Korean Stock Exchange from 2011 to 2014 were collected and analysed with the detailed CSR reports. Using a correlation test, we found a weak association between CSR and the quality of corporate reporting. However, the regression tests provided a strong relationship between CSR and the quality of corporate reporting after controlling for other variables that may affect the quality of corporate reporting. Additionally, we calculated the t-statistics based on heteroskedaticity-consistent standard errors (White, 1980). Results - Before we run the regression test, we sort the measures of the two dependent variables into each rating of CSR (from AAA to CCC). The results indicate that the quality of corporate reporting measured by discretionary accruals and performance-matched discretionary accruals monotonically decrease as the CSR ratings increase. This supports our hypothesis. In the regression tests, the coefficient on MJDA (PMDA) is -0.183 (-0.173) and significant at the 5% level. We can interpret the results as CSR affecting the quality of corporate reporting in positive ways. Other coefficients on control variables are consistent with prior studies. For example, the coefficients on both LOSS and LEV are positive and significant at conventional level, meaning that firms with financial difficulty may harm their quality of corporate reporting. Conclusion - We found an evidence that CSR is positively associated with the quality of corporate reporting. This study contributes to the literature in various ways. First, this study extends the line of CSR research by providing additional evidence in the setting of ethical behaviors by managements. This is consistent with the hypothesis and supports the results of prior studies. Second, to the best of my knowledge, this is the first study using the MSCI CSR ratings. In contrast with prior studies using different measures of CSR, the MSCI CSR ratings allow us to provide in-depth analysis. Third, the additional measure of dependent variable (PMDA) allows us to improve the robustness of our results. Overall, the results provided this study to extend the findings in prior studies by providing incremental evidence.

Relationships between arterial and urinary $P_CO_2}, P{O_2}$ and acid-base balances (동맥혈 및 뇨 $P_CO_2}, P{O_2}$ 의 산-염기 균형 및 뇨량과의 관계)

  • Kim, Yong-Jin;Lee, Yeong-Gyun
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.213-220
    • /
    • 1983
  • Pulmonary function is the determinant of blood gas tension. However, Acid-Base disturbances can also alter partial pressures of oxygen and carbon dioxide in arterial blood. During respiratory acidosis $PO_2$ will be lowered and reverse changes will be produced during respiratory alkalosis. On the other hand, in metabolic acidosis $PO_2$ will be elevated and $PCO_2$ will be lowered by the respiratory compensation, and reverse response will be induced in metabolic alkalosis. Urinary gas tension has many influencing factors than arterial blood and difficult to estimate the tendency of its alterations. Urinary $PO_2$ and $PCO_2$ are not always identical level as venous blood. It is to be altered by blood gas tension, flow rate of urine, metabolic rate of kidney, and Acid-Base status of blood. Particularly countercurrent exchange of oxygen and carbon dioxide in the renal medulla will make larger alteration of gas tension than venous blood. After induction of Acid-Base disturbances [disturbances] arterial and urinary $PCO_2$, $PO_2$, urinary volume, and osmolarity were determined in dogs, and the relationships between arterial and urinary $PCO_2$ , $PO_2$ Acid-Base disturbances, urinary volume, and osmolarity were investigated. 1. During the acute Metabolic and Respiratory disturbances urinary pH did not respond on respiratory origin. However, there were immediate urinary response in pH on metabolic origin. 2. Urinary $PO_2$, $PCO_2$, did not always follow arterial or venous gas tension and Acid-Base disturbance. Urinary $PCO_2$, correlate well with the urinary volume. The larger the urinary volume, $PCO_2$ lowered to the venous level. The smaller the urinary volume, urinary $PCO_2$ tends to be higher. However urinary $PO_2$ did not have any particular correlation with urinary volume. 3. Correlation between urinary $PCO_2$ and $PO_2$ were inversely proportional to arterial blood. Differences of $PCO_2$ between arterial blood and urine also did not have any particular correlation with urinary volume. This may suggest that changes on blood gas tensions can influence on urinary $PCO_2$. 4. There were eminent clear inverse correlation between urinary $PCO_2$ and osmolar concentrations of urine. Above results strongly suggest that partial pressure of gas in urine primarily depend upon counter-current exchanges in renal medullary tissues.

  • PDF

Comparison of Motor Fitness of Cerebral Palsy Chidren with normal throug Phyisical Fitness Diagnosis Evaluation (체력진단 평가를 통한 뇌성마비 아동과 정상아동의 운동능력 비교연구)

  • Lee Kang-Jun;Park Rae-Joon;Kim Jong-Yul
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.1
    • /
    • pp.101-112
    • /
    • 2000
  • The aim of this study is to compared the cerebral palsy children with normal children in the exercise and cardio vascular ability after this study as the fundamental data fer mating programs for the cerebral palsy children. The test of this study is about twenty girls, the control group of the normal children(n=10) and the experiment group of cerebral palsy children(n=10). They were studied in four aspects which were the anthropometry, the medical check in the rest, the physical fitness or exercise roads test and the change of the target heart rate during exercise. The result were as follows : 1. The characteristic of the physical type : The control group is higher than the experiment group in the standing height and the body weight but their's little difference between them (p<0.05). The control group is lower than the experiment group in the body fat. 2. The characteristic of the medical check in the rest : The control group is higher than the experiment group in the vital capacity and flood expiratoryvolume one second. The control group is higher that the experiment group in the blood pressure of systolic and Diastolic. There's little difference between them(p<0.01). The control is lower than the experiment group in the heart pulse rate. There's little difference between them(p<0.005). 3. The characteristic of basic physical strength evaluation : The experiment group is the lowest dynamic muscular endurance, balance, agility and endurance which need to move the body with weight. The control group is much higher than the experiment group in the flexibility and muscle strength(Back strength). There's no difference between them(p<0.05). 4. The characteristics of the exercise stress last : The control group is higher than the experiment group in the endurance, the maximum of oxygen intake, endurance level and the out take of calory. There's little difference between them(p<0.01). 5. The characteristic of the change of the target heart rate during exercise : The control group is lower than the experiment group exchange of target heart rate, There's no difference them.

  • PDF

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

Synthesis of Na-A Type of Zeolite from Funnel-Glass Waste (브라운관의 후면유리 폐기물을 이용한 제올라이트 합성)

  • 장영남;배인국;채수천;류경원
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • Through alkaline hydrothermal activation processes, Na-A type zeolite was synthesized as a single phase with funnel-glass waste from a television tube factory. The autoclaving was performed in a closed teflon vessel in the range of 80~95$^{\circ}$C. The silica-rich solution as a starting material was hydrothermally synthesized with quartz in IN NaOH by heating 350uC under the pressure of 1,500 atm. $NaAlO_2$ was made from NaOH and Al(OHh by heating 95$^{\circ}$C for 2-3 hours and the molar ratios of it were $Na_2O/Al_2O_3$ = 1.4 and $H_2O/Na_2O$=8. The equi-dimensional A type zeolite (1-2 11) was formed by the simple mixing of the silica-rich solution, glass waste and $NaAlO_23$ for 1-3 hours-heating at $80^{\circ}C$. The characterization of the reaction product shows Na-A as a single phase. The synthesized zeolite has cuba-dodecahedral form and $Ca^{2+}$ ion exchange capacity of the Na-A was in the range of 215-220 mequiva1entilOO g.

  • PDF

Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests (광릉 활엽수림과 침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산)

  • Kang, Min-Seok;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.233-246
    • /
    • 2009
  • The partitioning of evapotranspiration (ET) into evaporation (E) and transpiration (T) is critical in understanding the water cycle and the couplings between the cycles of energy, water, and carbon. In forests, the total ET measured above the canopy consists of T from both overstory and understory vegetation, and E from soil and the intercepted precipitation. To quantify their relative contributions, we have measured ET from the floors of deciduous and coniferous forests in Gwangneung using eddy covariance technique from 1 June 2008 to 31 May 2009. Due to smaller eddies that contribute to turbulent transfer near the ground, we performed a spectrum analysis and found that the errors associated with sensor separation were <10%. The annual sum of the understory ET was 59 mm (16% of total ET) in the deciduous forest and 43 mm (~7%) in the coniferous forest. Overall, the understory ET was not negligible except during the summer season when the plant area index was near its maximum. In both forest canopies, the decoupling factor ($\Omega$) was about ~0.15, indicating that the understory ET was controlled mainly by vapor pressure deficit and soil moisture content. The differences in the understory ET between the two forest canopies were due to different environmental conditions within the canopies, particularly the contrasting air humidity and soil water content. The non-negligible understory ET in the Gwangneung forests suggests that the dual source or multi-level models are required for the interpretation and modeling of surface exchange of mass and energy in these forests.